Drug Interactions between Flutabs and secukinumab
This report displays the potential drug interactions for the following 2 drugs:
- Flutabs (acetaminophen/dextromethorphan/guaifenesin/pseudoephedrine)
- secukinumab
Interactions between your drugs
dextromethorphan secukinumab
Applies to: Flutabs (acetaminophen / dextromethorphan / guaifenesin / pseudoephedrine) and secukinumab
MONITOR: Plasma concentrations and effects of drugs that are CYP450 substrates may be altered following the initiation of interleukin (IL) inhibitors, tumor necrosis factor (TNF) blockers, or interferon (IFN) inhibitors in patients with chronic inflammatory diseases. The formation of hepatic CYP450 enzymes may be suppressed during infection and chronic inflammation by increased levels of certain cytokines (e.g., interleukins-1, -6, and -10; tumor necrosis factor alpha; interferons). Immunomodulating therapy that improves inflammation by targeting these cytokines may restore or normalize CYP450 enzyme levels resulting in increased or decreased metabolism of these substrates to active or inactive metabolites. The therapeutic target and disease state being treated may play a role in the significance of this interaction. The most evidence is currently for agents targeting the actions of IL-6 and in disease states with high levels of inflammation such as rheumatoid arthritis, rather than in patients with psoriasis and atopic dermatitis. In vitro studies showed that tocilizumab, an IL-6 inhibitor, has the potential to impact expression of various hepatic microsomal enzymes including CYP450 1A2, 2B6, 2C9, 2C19, 2D6, and 3A4. Its effects on CYP450 2C8 or transporters is unknown. In vivo studies with omeprazole (a substrate of CYP450 2C19 and 3A4) and simvastatin (a substrate of CYP450 3A4 and OATP 1B1) showed decreases of up to 28% and 57% in systemic exposure, respectively, one week following a single dose of tocilizumab. Likewise, simvastatin and simvastatin acid exposures decreased by 45% and 36%, respectively, in 17 patients with rheumatoid arthritis one week following a single 200 mg subcutaneous dose of sarilumab, another IL-6 inhibitor. A role for other interleukins such as IL-12, IL-17A, or IL-23 in the regulation of CYP450 enzymes has not been clearly established, and it is not known whether antagonists of these interleukins would similarly affect CYP450 metabolism. For example, in drug interaction studies, the IL-23 antagonists risankizumab and tildrakizumab, and the IL-17A antagonist ixekizumab demonstrated no clinically significant effects on the activity of CYP450 isoenzymes 1A2, 3A, 2C19, 2D6, or 2C9. Similarly, data evaluating this interaction are not available for the TNF blockers certolizumab and etanercept.
MANAGEMENT: Caution is advised when treatments targeting cytokines such as interleukins, tumor necrosis factors, or interferons are prescribed to patients receiving concomitant drugs that are CYP450 substrates, particularly those with narrow therapeutic ranges (e.g., antiarrhythmics, anticonvulsants, immunosuppressants, theophylline) or sensitive substrates where decreases in plasma levels may be significant or undesirable (e.g., oral contraceptives, statins, benzodiazepines, opioids). Clinical and/or laboratory monitoring should be considered following the initiation or withdrawal of such treatments, and the dosage(s) of the CYP450 substrate(s) adjusted accordingly. Clinicians should note that the effects of IL inhibitors, TNF blockers, and IFN inhibitors on CYP450 activities may persist for several weeks after stopping therapy. Individual product labeling for these products should be consulted for specific recommendations.
References (21)
- (2001) "Product Information. Remicade (infliximab)." Centocor Inc
- (2003) "Product Information. Amevive (alefacept)." Biogen
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- (2008) "Product Information. Arcalyst (rilonacept)." Regeneron Pharmaceuticals Inc
- (2009) "Product Information. Stelara (ustekinumab)." Centocor Inc
- (2009) "Product Information. Simponi (golimumab)." Centocor Inc
- (2009) "Product Information. Ilaris (canakinumab)." Novartis Pharmaceuticals
- (2010) "Product Information. Actemra (tocilizumab)." Genentech
- (2014) "Product Information. Sylvant (siltuximab)." Janssen Biotech, Inc.
- (2015) "Product Information. Cosentyx (secukinumab)." Novartis Pharmaceuticals
- (2016) "Product Information. Taltz Autoinjector (ixekizumab)." Eli Lilly and Company
- (2017) "Product Information. Kevzara (sarilumab)." sanofi-aventis
- (2018) "Product Information. Ilumya (tildrakizumab)." Merck & Co., Inc
- (2018) "Product Information. Gamifant (emapalumab)." Sobi Inc
- (2019) "Product Information. Skyrizi (risankizumab)." AbbVie US LLC
- (2023) "Product Information. Bimzelx (bimekizumab)." UCB Australia Pty Ltd T/A UCB Pharma Division of UCB Australia
- (2023) "Product Information. Bimzelx (bimekizumab)." UCB Pharma Ltd
- (2023) "Product Information. Bimzelx Prefilled Syringe (bimekizumab)." UCB Pharma Inc
- (2023) "Product Information. Bimzelx (bimekizumab)." UCB Canada Inc
- Bruin G, Hasselberg A, Koroleva I, et al. (2019) "Secukinumab treatment does not alter the pharmacokinetics of the cytochrome P450 3A4 substrate midazolam in patients with moderate to severe psoriasis." Clin Pharmacol Ther, 106, p. 1380-8
- de Jong LM, Klomp SD, Treijtel N, Rissmann R, Swen JJ, Manson ML (2022) "A systematic review on disease-drug-drug interactions with immunomodulating drugs: a critical appraisal of risk assessment and drug labelling." Br J Clin Pharmacol, 88, p. 4387-402
Drug and food interactions
acetaminophen food
Applies to: Flutabs (acetaminophen / dextromethorphan / guaifenesin / pseudoephedrine)
GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.
MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).
References (12)
- Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA (1985) "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med, 145, p. 2019-23
- O'Dell JR, Zetterman RK, Burnett DA (1986) "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA, 255, p. 2636-7
- Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB (1986) "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med, 104, p. 399-404
- Thummel KE, Slattery JT, Nelson SD (1988) "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther, 245, p. 129-36
- McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL (1980) "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA, 244, p. 251-3
- Kartsonis A, Reddy KR, Schiff ER (1986) "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med, 105, p. 138-9
- Prescott LF, Critchley JA (1983) "Drug interactions affecting analgesic toxicity." Am J Med, 75, p. 113-6
- (2002) "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical
- Whitcomb DC, Block GD (1994) "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA, 272, p. 1845-50
- Bonkovsky HL (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Nelson EB, Temple AR (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Zimmerman HJ, Maddrey WC (1995) "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology, 22, p. 767-73
dextromethorphan food
Applies to: Flutabs (acetaminophen / dextromethorphan / guaifenesin / pseudoephedrine)
GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.
MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.
References (4)
- Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
- Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
- (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
- (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
pseudoephedrine food
Applies to: Flutabs (acetaminophen / dextromethorphan / guaifenesin / pseudoephedrine)
MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.
MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.
References (7)
- Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
- Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
- (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
- (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
- (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
- (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
- (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.