Skip to main content

Drug Interactions between colchicine and Tremfya

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

colchicine guselkumab

Applies to: colchicine and Tremfya (guselkumab)

MONITOR: Plasma concentrations and effects of drugs that are CYP450 substrates may be altered following the initiation of interleukin (IL) inhibitors, tumor necrosis factor (TNF) blockers, or interferon (IFN) inhibitors in patients with chronic inflammatory diseases. The formation of hepatic CYP450 enzymes may be suppressed during infection and chronic inflammation by increased levels of certain cytokines (e.g., interleukins-1, -6, and -10; tumor necrosis factor alpha; interferons). Immunomodulating therapy that improves inflammation by targeting these cytokines may restore or normalize CYP450 enzyme levels resulting in increased or decreased metabolism of these substrates to active or inactive metabolites. The therapeutic target and disease state being treated may play a role in the significance of this interaction. The most evidence is currently for agents targeting the actions of IL-6 and in disease states with high levels of inflammation such as rheumatoid arthritis, rather than in patients with psoriasis and atopic dermatitis. In vitro studies showed that tocilizumab, an IL-6 inhibitor, has the potential to impact expression of various hepatic microsomal enzymes including CYP450 1A2, 2B6, 2C9, 2C19, 2D6, and 3A4. Its effects on CYP450 2C8 or transporters is unknown. In vivo studies with omeprazole (a substrate of CYP450 2C19 and 3A4) and simvastatin (a substrate of CYP450 3A4 and OATP 1B1) showed decreases of up to 28% and 57% in systemic exposure, respectively, one week following a single dose of tocilizumab. Likewise, simvastatin and simvastatin acid exposures decreased by 45% and 36%, respectively, in 17 patients with rheumatoid arthritis one week following a single 200 mg subcutaneous dose of sarilumab, another IL-6 inhibitor. A role for other interleukins such as IL-12, IL-17A, or IL-23 in the regulation of CYP450 enzymes has not been clearly established, and it is not known whether antagonists of these interleukins would similarly affect CYP450 metabolism. For example, in drug interaction studies, the IL-23 antagonists risankizumab and tildrakizumab, and the IL-17A antagonist ixekizumab demonstrated no clinically significant effects on the activity of CYP450 isoenzymes 1A2, 3A, 2C19, 2D6, or 2C9. Similarly, data evaluating this interaction are not available for the TNF blockers certolizumab and etanercept.

MANAGEMENT: Caution is advised when treatments targeting cytokines such as interleukins, tumor necrosis factors, or interferons are prescribed to patients receiving concomitant drugs that are CYP450 substrates, particularly those with narrow therapeutic ranges (e.g., antiarrhythmics, anticonvulsants, immunosuppressants, theophylline) or sensitive substrates where decreases in plasma levels may be significant or undesirable (e.g., oral contraceptives, statins, benzodiazepines, opioids). Clinical and/or laboratory monitoring should be considered following the initiation or withdrawal of such treatments, and the dosage(s) of the CYP450 substrate(s) adjusted accordingly. Clinicians should note that the effects of IL inhibitors, TNF blockers, and IFN inhibitors on CYP450 activities may persist for several weeks after stopping therapy. Individual product labeling for these products should be consulted for specific recommendations.

References (21)
  1. (2001) "Product Information. Remicade (infliximab)." Centocor Inc
  2. (2003) "Product Information. Amevive (alefacept)." Biogen
  3. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  4. (2008) "Product Information. Arcalyst (rilonacept)." Regeneron Pharmaceuticals Inc
  5. (2009) "Product Information. Stelara (ustekinumab)." Centocor Inc
  6. (2009) "Product Information. Simponi (golimumab)." Centocor Inc
  7. (2009) "Product Information. Ilaris (canakinumab)." Novartis Pharmaceuticals
  8. (2010) "Product Information. Actemra (tocilizumab)." Genentech
  9. (2014) "Product Information. Sylvant (siltuximab)." Janssen Biotech, Inc.
  10. (2015) "Product Information. Cosentyx (secukinumab)." Novartis Pharmaceuticals
  11. (2016) "Product Information. Taltz Autoinjector (ixekizumab)." Eli Lilly and Company
  12. (2017) "Product Information. Kevzara (sarilumab)." sanofi-aventis
  13. (2018) "Product Information. Ilumya (tildrakizumab)." Merck & Co., Inc
  14. (2018) "Product Information. Gamifant (emapalumab)." Sobi Inc
  15. (2019) "Product Information. Skyrizi (risankizumab)." AbbVie US LLC
  16. (2023) "Product Information. Bimzelx (bimekizumab)." UCB Australia Pty Ltd T/A UCB Pharma Division of UCB Australia
  17. (2023) "Product Information. Bimzelx (bimekizumab)." UCB Pharma Ltd
  18. (2023) "Product Information. Bimzelx Prefilled Syringe (bimekizumab)." UCB Pharma Inc
  19. (2023) "Product Information. Bimzelx (bimekizumab)." UCB Canada Inc
  20. Bruin G, Hasselberg A, Koroleva I, et al. (2019) "Secukinumab treatment does not alter the pharmacokinetics of the cytochrome P450 3A4 substrate midazolam in patients with moderate to severe psoriasis." Clin Pharmacol Ther, 106, p. 1380-8
  21. de Jong LM, Klomp SD, Treijtel N, Rissmann R, Swen JJ, Manson ML (2022) "A systematic review on disease-drug-drug interactions with immunomodulating drugs: a critical appraisal of risk assessment and drug labelling." Br J Clin Pharmacol, 88, p. 4387-402

Drug and food interactions

Major

colchicine food

Applies to: colchicine

GENERALLY AVOID: Coadministration with grapefruit juice may increase the serum concentrations of colchicine. Clinical toxicity including myopathy, neuropathy, multiorgan failure, and pancytopenia may occur. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism and P-glycoprotein efflux in the gut wall by certain compounds present in grapefruits. A published case report describes an eight-year-old patient with familial Mediterranean fever who developed acute clinical colchicine intoxication after ingesting approximately one liter of grapefruit juice per day for two months prior to hospital admission while being treated with colchicine 2 mg/day. Her condition progressed to circulatory shock and multiorgan failure, but she recovered with supportive therapy after 24 days in the hospital. In a study of 21 healthy volunteers, administration of 240 mL grapefruit juice twice a day for 4 days was found to have no significant effect on the pharmacokinetics of a single 0.6 mg dose of colchicine. However, significant interactions have been reported with other CYP450 3A4 inhibitors such as clarithromycin, diltiazem, erythromycin, ketoconazole, ritonavir, and verapamil.

MANAGEMENT: Patients treated with colchicine should be advised to avoid the consumption of grapefruit and grapefruit juice, and to contact their physician if they experience symptoms of colchicine toxicity such as abdominal pain, nausea, vomiting, diarrhea, fatigue, myalgia, asthenia, hyporeflexia, paresthesia, and numbness.

References (19)
  1. Pettinger WA (1975) "Clonidine, a new antihypertensive drug." N Engl J Med, 293, p. 1179-80
  2. Caraco Y, Putterman C, Rahamimov R, Ben-Chetrit E (1992) "Acute colchicine intoxication: possible role of erythromycin administration." J Rheumatol, 19, p. 494-6
  3. Schiff D, Drislane FW (1992) "Rapid-onset colchicine myoneuropathy." Arthritis Rheum, 35, p. 1535-6
  4. Putterman C, Ben-Chetrit E, Caraco Y, Levy M (1991) "Colchicine intoxication: clinical pharmacology, risk factors, features, and management." Semin Arthritis Rheum, 21, p. 143-55
  5. Boomershine KH (2002) "Colchicine-induced rhabdomyolysis." Ann Pharmacother, 36, p. 824-6
  6. (2003) "Severe colchicine-macrolide interactions." Prescrire Int, 12, p. 18-9
  7. Tateishi T, Soucek P, Caraco Y, Guengerich FP, Wood AJ (1996) "Colchicine biotransformation by human liver microsomes. Identification of CYP3A4 as the major isoform responsible for colchicine demethylation." Biochem Pharmacol, 53, p. 111-6
  8. Dogukan A, Oymak FS, Taskapan H, Guven M, Tokgoz B, Utas C (2001) "Acute fatal colchicine intoxication in a patient on continuous ambulatory peritoneal dialysis (CAPD). Possible role of clarithromycin administration." Clin Nephrol, 55, p. 181-2
  9. Rollot F, Pajot O, Chauvelot-Moachon L, Nazal EM, Kelaidi C, Blanche P (2004) "Acute colchicine intoxication during clarithromycin administration." Ann Pharmacother, 38, p. 2074-7
  10. Wilbur K, Makowsky M (2004) "Colchicine myotoxicity: case reports and literature review." Pharmacotherapy, 24, p. 1784-92
  11. Hung IF, Wu AK, Cheng VC, et al. (2005) "Fatal interaction between clarithromycin and colchicine in patients with renal insufficiency: a retrospective study." Clin Infect Dis, 41, p. 291-300
  12. Cheng VC, Ho PL, Yuen KY (2005) "Two probable cases of serious drug interaction between clarithromycin and colchicine." South Med J, 98, p. 811-3
  13. Akdag I, Ersoy A, Kahvecioglu S, Gullulu M, Dilek K (2006) "Acute colchicine intoxication during clarithromycin administration in patients with chronic renal failure." J Nephrol, 19, p. 515-7
  14. van der Velden W, Huussen J, Ter Laak H, de Sevaux R (2008) "Colchicine-induced neuromyopathy in a patient with chronic renal failure: the role of clarithromycin." Neth J Med, 66, p. 204-6
  15. Goldbart A, Press J, Sofer S, Kapelushnik J (2000) "Near fatal acute colchicine intoxication in a child. A case report." Eur J Pediatr, 159, p. 895-7
  16. (2008) "Colchicine: serious interactions." Prescrire Int, 17, p. 151-3
  17. (2009) "Product Information. Colcrys (colchicine)." AR Scientific Inc
  18. Dahan A, Amidon GL (2009) "Grapefruit juice and its constitueants augment colchicine intestinal absorption: potential hazardous interaction and the role of p-glycoprotein." Pharm Res, 26, p. 883-92
  19. McKinnell J, Tayek JA (2009) "Short term treatment with clarithromycin resulting in colchicine-induced rhabdomyolysis." J Clin Rheumatol, 15, p. 303-5

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.