Skip to main content

Aztreonam (Monograph)

Brand names: Azactam, Cayston
Drug class: Monobactams

Medically reviewed by Drugs.com on Jul 25, 2023. Written by ASHP.

Introduction

Antibacterial; monocyclic β-lactam antibiotic; monobactam.1 42 43 44 246 253 306

Uses for Aztreonam

Intra-abdominal Infections

Treatment of intra-abdominal infections (including peritonitis) caused by susceptible gram-negative bacteria, including Citrobacter (including C. freundii), Enterobacter (including E. cloacae), E. coli, Klebsiella (including K. pneumoniae), Ps. aeruginosa, or Serratia (including S. marcescens).1 173 177 213 214 253 267

Do not use alone for empiric treatment of intra-abdominal infections since these usually are polymicrobial and frequently are mixed aerobic-anaerobic bacterial infections.173 213 214 267

Although aztreonam has good in vitro activity against many gram-negative bacteria, it has relatively poor activity against extended-spectrum β-lactamase (ESBL)-producing strains of E. coli and K. pneumoniae.709

For the treatment of peritoneal dialysis-associated peritonitis, aztreonam has been administered intraperitoneally [off-label].312 313 314 315

Gynecologic Infections

Treatment of gynecologic infections (e.g., endometritis, pelvic cellulitis) caused by susceptible gram-negative bacteria, including Enterobacter (including E. cloacae), E. coli, K. pneumoniae, or P. mirabilis.1 171 173 183 192 211 253

Do not use alone for empiric treatment of gynecologic infections since these usually are polymicrobial and frequently are mixed aerobic-anaerobic bacterial infections.171 173 183 211 Clindamycin or metronidazole generally used concomitantly if aztreonam used for initial treatment of gynecologic infections.171 173 177 183 211 213 214 267 268 321

The combination of clindamycin and gentamicin has been the gold standard for treatment of endometritis; however, a regimen consisting of aztreonam plus clindamycin has been used.321

Oral or topical antibiotics (e.g., clindamycin, metronidazole) are generally used for the treatment of other common gynecologic infections (e.g., bacterial vaginosis).257

Respiratory Tract Infections

Treatment of lower respiratory tract infections (e.g., pneumonia, bronchitis) caused by susceptible gram-negative bacteria, including Enterobacter, E. coli, H. influenzae, K. pneumoniae, Ps. aeruginosa, P. mirabilis, or S. marcescens.1 165 167 168 169 173 176 177 192 206 208 222 253

Also has been used for treatment of lower respiratory tract infections caused by susceptible Citrobacter [off-label],167 168 176 206 208 267 Hafnia [off-label], K. oxytoca [off-label],168 Morganella [off-label],206 208 P. vulgaris,165 Providencia stuartii,192 or Moraxella catarrhalis.165 208

Do not use alone for empiric treatment of lower respiratory tract infections since these infections frequently are caused by gram-positive and/or anaerobic bacteria.1 48 164 165 176 186 202 206 208 223 235 241 253 266 268

A joint guideline by the American Thoracic Society (ATS) and the Infectious Diseases Society of America (IDSA) includes aztreonam as an empiric treatment option for Ps. aeruginosa in adults with community-acquired pneumonia treated in the inpatient setting.512 The guideline recommends empiric coverage for Ps. aeruginosa only if locally validated risk factors for the pathogen are present.512

In adults with hospital-acquired and ventilator-associated pneumonia, IDSA suggests aztreonam as an empiric treatment option for gram-negative/antipseudomonal coverage; if patient has a severe penicillin allergy and aztreonam is used instead of a β-lactam-based antibiotic, coverage for methicillin-sensitive S. aureus (MSSA) should be included.750

Also has been used alone or in conjunction with an aminoglycoside for treatment of acute exacerbations of bronchopulmonary Ps. aeruginosa infections in some patients with cystic fibrosis.48 177 207 208 275 280

Aztreonam for inhalation solution (Cayston) is used via nebulization to improve respiratory symptoms in cystic fibrosis patients ≥7 years of age with Ps. aeruginosa in the lungs.306 307 308 309 310 319 Safety and efficacy of this preparationnot established in pediatric patients <7 years of age, in patients with FEV1 <25% or >75% of predicted, or in patients colonized with Burkholderia cepacia.306

Septicemia

Treatment of septicemia caused by susceptible gram-negative bacteria, including Enterobacter, E. coli, K. pneumoniae, Ps. aeruginosa, P. mirabilis, or S. marcescens.1 173 176 177 186 192 221 222 223 253

Also has been used for treatment of septicemia caused by susceptible Citrobacter267 or H. influenzae.186 192

The Surviving Sepsis Campaign guidelines recommend immediate administration of appropriate antimicrobials in adults with possible sepsis or septic shock.258 Empiric antimicrobials with adequate coverage should be selected based on patient’s risk for certain pathogens (e.g., MRSA, multidrug-resistant organisms).258

Skin and Skin Structure Infections

Treatment of skin and skin structure infections (including those associated with postoperative wounds, ulcers, and burns) caused by susceptible gram-negative bacteria, including Citrobacter, Enterobacter, E. coli, K. pneumoniae, P. mirabilis, Ps. aeruginosa, or S. marcescens.1 173 177 192 222 223 253

Adjunct to surgery in management of abscesses, cutaneous infections, infections complicating hollow viscus perforations, or infections of serous surfaces caused by susceptible gram-negative aerobic bacteria.1 253

Aztreonam is not included as a potential antimicrobial of choice in IDSA guidelines on the management of skin and skin structure infections; when broad-spectrum empiric treatment is necessary for suspected polymicrobial infection, other antibiotics are generally recommended.543

When empiric treatment of moderate or severe diabetic foot infections is indicated, IDSA recommends a broad-spectrum regimen pending results of in vitro culture and susceptibility testing.544 When probable pathogens include MRSA, Enterobacteriaceae, Pseudomonas, and obligate anaerobes, IDSA recommends an empiric regimen of vancomycin in conjunction with ceftazidime, cefepime, piperacillin/tazobactam, aztreonam, or a carbapenem.544 If aztreonam, ceftazidime, or cefepime is used in conjunction with vancomycin, the empiric regimen should also include an additional anti-infective for anaerobic coverage.544

Urinary Tract Infections (UTIs)

Treatment of uncomplicated or complicated UTIs (including pyelonephritis and initial or recurrent cystitis) caused by susceptible gram-negative bacteria, including Citrobacter, E. cloacae, E. coli, K. pneumoniae, K. oxytoca, P. mirabilis, Ps. aeruginosa, or S. marcescens.1 90 160 162 170 175 176 177 190 192 218 219 223 253

Also has been used for treatment of UTIs caused by susceptible E. aerogenes,176 218 Morganella morganii,176 218 267 P. vulgaris,218 or Providencia.177 218

Has been effective for treatment of cystitis or pyelonephritis caused by gram-negative aerobic bacteria resistant to aminopenicillins, first or second generation cephalosporins, and/or aminoglycosides.170 218

Bone and Joint Infections

Treatment of bone and joint infections (including osteomyelitis or septic arthritis) caused by susceptible gram-negative bacteria, including Enterobacter, Escherichia coli, Haemophilus influenzae, Klebsiella, Proteus mirabilis, Pseudomonas aeruginosa, or Serratia marcescens.48 166 172 173 177 178 220 267 268 282

If gram-positive bacteria known or suspected to also be involved, regimen should also include an antistaphylococcal anti-infective (e.g., penicillinase-resistant penicillin, vancomycin).177

IDSA states aztreonam is an alternative for treatment of native vertebral osteomyelitis caused by Ps. aeruginosa if a drug of first choice (i.e., cefepime, meropenem, doripenem) cannot be used because of severe penicillin allergy and ciprofloxacin cannot be used because of quinolone-resistant strains.590

CNS Infections

Treatment of healthcare-associated ventriculitis and meningitis caused by susceptible aerobic gram-negative bacteria in patients with anaphylaxis or other contraindications to β-lactam therapy (including carbapenems).760

Has been effective for adults and children with meningitis due to Ps. aeruginosa, H. influenzae, and other Enterobacteriaceae.761 762 763 764 765 766 767

IDSA guidelines suggest that choice between aztreonam and other alternatives (such as ciprofloxacin for Ps. aeruginosa or trimethoprim-sulfamethoxazole for β-lactamase-producing Enterobacteriacea) should consider local susceptibility patterns and known co-infecting organisms.760

Antimicrobial Prophylaxis in Surgery

Antimicrobial prophylaxis in patients undergoing certain surgical procedures in which aerobic gram-negative bacteria are common pathogens;360 374 used in conjunction with other anti-infectives.360 374

Regimen of vancomycin (or clindamycin) in conjunction with aztreonam recommended as an alternative for perioperative prophylaxis in patients undergoing gastroduodenal or biliary tract surgery, hysterectomy (vaginal or abdominal), or certain organ transplant procedures (liver, pancreas, pancreas-kidney).374 Regimen of clindamycin and aztreonam also considered an alternative in patients undergoing appendectomy, colorectal or small intestine surgery, or urologic surgery involving an implanted prosthesis.374

Some clinicians recommend concomitant use of an anti-infective active against enteric gram-negative bacilli (e.g., aztreonam, aminoglycoside, fluoroquinolone) when vancomycin used for perioperative prophylaxis in patients undergoing neurosurgery or cardiac, orthopedic, or vascular surgery.360

Empiric Therapy in Febrile Neutropenic Patients

Has been used in conjunction with vancomycin (with or without amikacin) for empiric anti-infective therapy in febrile granulocytopenic adults.180 216

An anti-infective active against staphylococci (e.g., vancomycin) also should be used if aztreonam is used for empiric therapy in these patients.215 268 457 Some guidelines have suggested a regimen of aztreonam and vancomycin as an alternative empiric regimen in patients with immediate-type penicillin hypersensitivity.457

Aztreonam Dosage and Administration

Administration

Administer by IV injection1 253 or infusion1 253 or by deep IM injection.1 253

Also administered by oral inhalation via nebulization using the commercially available powder for inhalation solution.306

Has been administered intraperitoneally in dialysis fluid.36 56 196 227 313 314 315

IV Injection

Reconstitution

For direct intermittent IV injection, reconstitute single-dose vials containing 500 mg, 1 g, or 2 g by adding 6–10 mL of sterile water for injection.1 253 Shake immediately and vigorously after diluent is added.1 253

Rate of Administration

Inject appropriate dose of reconstituted solution slowly over a period of 3–5 minutes either directly into a vein or into the tubing of a compatible IV solution.1 253

IV Infusion

When given IV via a common administration tubing used to administer another drug, especially one incompatible with aztreonam, flush tubing before and after aztreonam administration with an IV infusion solution compatible with both drugs;1 253 do not give the drugs simultaneously.1 253 When a Y-type IV administration set is used, give careful attention to the calculated volume of aztreonam solution to ensure that entire dose is infused.1 253

Reconstitution and Dilution

For intermittent IV infusion, reconstitute single-dose vial containing 500 mg, 1 g, or 2 g of aztreonam by adding at least 1.5, 3, or 6 mL, respectively, of sterile water for injection.1 253 Shake immediately and vigorously after diluent is added.1 253 Then, dilute further by adding reconstituted solution to a compatible IV infusion solution1 253 to provide a solution with a final concentration ≤20 mg/mL. A volume control IV administration set may be used to add the appropriate dose of reconstituted aztreonam solution to the compatible IV infusion solution during administration;1 253 this final dilution should provide a solution with a concentration ≤20 mg/mL.1 253

Rate of Administration

Administer by IV infusion over 20–60 minutes.1 253

IM Injection

Inject appropriate dose of reconstituted IM solution deeply into a large muscle (e.g., upper outer quadrant of gluteus maximus, lateral part of thigh) using usual techniques and precautions.1 253

Generally well tolerated when given IM;1 253 do not admix with local anesthetic agents.1 253

Reconstitution

For IM injection, reconstitute single-dose vial containing 500 mg, 1 g, or 2 g by adding at least 1.5, 3, or 6 mL, respectively, of sterile water for injection, 0.9% sodium chloride injection, bacteriostatic water for injection (with benzyl alcohol or parabens), or bacteriostatic sodium chloride injection (with benzyl alcohol).1 253 Shake immediately and vigorously after diluent is added.1 253

Oral Inhalation via Nebulization

For administration by oral inhalation via nebulization, aztreonam is commercially available in a kit containing single-dose vials of aztreonam powder for inhalation solution and single-dose ampuls of 0.17% sodium chloride diluent.306

Reconstitute aztreonam powder for inhalation solution using only the diluent provided by the manufacturer;306 do not reconstitute until it is time to administer a dose.306

Following reconstitution, administer the inhalation solution via nebulization using only an Altera nebulizer system.306 Do not administer using any other type of nebulizer and do not administer IV or IM.306

Patients receiving aztreonam oral inhalation therapy should use a bronchodilator before aztreonam is administered.306 Short-acting bronchodilators can be taken between 15 minutes and 4 hours prior to each aztreonam dose.306 Alternatively, long-acting bronchodilators can be taken 0.5–12 hours prior to administration of aztreonam.306

For patients taking multiple inhaled therapies, recommended order of administration is a bronchodilator, mucolytics, and, lastly, aztreonam.306

Reconstitution

To prepare a dose, add the contents of a single-dose ampul of diluent provided by the manufacturer to a single-dose vial of aztreonam lyophilized powder for inhalation solution.306 Gently swirl vial until powder dissolves completely.306

Administer the inhalation solution via nebulization immediately after reconstitution.306

Nebulization

Pour reconstituted aztreonam inhalation solution into handset of Altera nebulizer system and turn unit on.306 Do not mix reconstituted inhalation solution with any other drug in the Altera nebulizer handset.306

Patient should be seated in a relaxed, upright position.306 Place mouthpiece of nebulizer handset into the mouth;306 with lips closed around mouthpiece, patient should breathe normally through the mouthpiece.306

About 2–3 minutes are required to administer the complete dose of reconstituted inhalation solution using the nebulizer system.306

Consult manufacturer's information for additional information on administration via the nebulizer.306 Consult information included with the nebulizer system for instructions on testing nebulizer functionality and cleaning the handset.306

Dosage

Dosage and route of administration should be determined by type and severity of infection, susceptibility of causative organism, and patient condition.1 253 Do not use dosages lower than those usually recommended.1 253

For most infections, continue parenteral therapy for at least 48 hours after patient becomes asymptomatic or evidence of eradication of infection obtained.1 253 Persistent infections may require several weeks of treatment.1 253

Pediatric Patients

General Dosage for Neonates†
IV

Neonates ≤7 days of age: AAP recommends 30 mg/kg every 12 hours in those whose gestational age is <34 weeks or 30 mg/kg every 8 hours in those whose gestational age is ≥34 weeks.292

Neonates 8–28 days of age: AAP recommends 30 mg/kg every 8 hours in those whose gestational age is <34 weeks or 30 mg/kg every 6 hours in those whose gestational age is ≥34 weeks.292

General Pediatric Dosage
IV

Children ≥9 months of age: Manufacturer recommends 30 mg/kg every 8 hours for treatment of mild to moderate infections or 30 mg/kg every 6 or 8 hours for treatment of moderate to severe infections.1 253

Children beyond the neonatal period: AAP recommends 90–120 mg/kg daily given in 3 or 4 divided doses.292

Children with cystic fibrosis: Dosage of 50 mg/kg every 6 or 8 hours (i.e., 150–200 mg/kg daily) suggested by some clinicians.269 270 275 276 280

Intra-abdominal Infections
IV

30 mg/kg IV every 6–8 hours has been used in children >9 months of age.709 Higher doses may be reasonable in critically ill pediatric patients who may have an increased volume of distribution and/or accelerated clearance of antimicrobial agents.709

Cystic Fibrosis Patients with Ps. Aeruginosa
Oral Inhalation via Nebulization

Children ≥7 years of age: 75 mg 3 times daily for 28 days.306 Administer doses at least 4 hours apart (e.g., in the morning, after school, at bedtime).306 Follow 28-day treatment with 28-day period without the drug.306

In clinical trials, up to 9 courses used;309 310 each course consisted of 28 days of aztreonam oral inhalation therapy (75 mg 3 times daily), followed by 28 days without such therapy.309 310

Adults

General Adult Dosage
Moderately Severe Systemic Infections
IV or IM

1 or 2 g every 8 or 12 hours.1 253

Severe Systemic or Life-threatening Infections
IV

2 g every 6 or 8 hours.1 253

Bone and Joint Infections†
IV

Osteomyelitis caused by Ps. aeruginosa: 2 g every 8 hours for 6 weeks recommended by IDSA.590

Intra-abdominal Infections
IV

Usual dosage 1–2 g IV every 8 hours.709 In patients with impaired renal function, an initial dose of 1–2 g IV followed by 0.5–1 g IV every 6–12 hours is usually given.709

Urinary Tract Infections (UTIs)
IV or IM

500 mg or 1 g every 8 or 12 hours.1 160 161 162 165 177 186 190 253

Uncomplicated UTIs usually treated for 5–10 days;160 190 complicated UTIs usually treated for ≥10–18 days.160 162 164 165

Perioperative Prophylaxis†
IV or IM

2 g within 1 hour prior to initial incision.374 During prolonged procedures (>4 hours) or if major blood loss occurs, may give additional intraoperative doses every 4 hours.374

Duration of prophylaxis should be <24 hours for most procedures;360 374 no evidence to support continuing prophylaxis after wound closure or until all indwelling drains and intravascular catheters are removed.360

Cystic Fibrosis Patients with Ps. Aeruginosa
Oral Inhalation via Nebulization

75 mg 3 times daily for 28 days.306 Administer doses at least 4 hours apart (e.g., in the morning, after school, at bedtime).306 Follow 28-day treatment with 28-day period without the drug.306

In clinical trials, up to 9 courses used;309 each course consisted of 28 days of aztreonam oral inhalation therapy (75 mg 3 times daily), followed by 28 days without such therapy.309 310

Peritonitis in Patients Undergoing CAPD†
IV and/or Intraperitoneal†

1-g loading dose given IV followed by maintenance doses of 500 mg given intraperitoneally in 2 L of dialysate every 6 hours.36 227

Alternatively, intraperitoneal loading dose of 1 g per L of dialysate followed by intraperitoneal maintenance doses of 250 mg per L of dialysate.312

Prescribing Limits

Pediatric Patients

Treatment of Infections
IV

Maximum recommended in pediatric patients ≥9 months of age is 120 mg/kg daily, but higher dosage may be warranted in those with cystic fibrosis.1 253

Adults

Treatment of Infections
IV or IM

Maximum 8 g daily.1 253

Special Populations

Hepatic Impairment

Treatment of Infections
IV or IM

Dosage adjustments probably not needed in patients with stable primary biliary cirrhosis or other chronic hepatic disease, unless renal function also impaired.32 56 276 Serum half-life only slightly prolonged in patients with hepatic impairment.1 253

Although some clinicians recommend dosage be decreased by 20–25% in patients with alcoholic cirrhosis, especially if long-term therapy required,46 47 others suggest this decrease not needed, unless renal function also impaired.276 277

Renal Impairment

Treatment of Infections
IV or IM

Adults with Clcr ≤30 mL/minute: Modify doses and/or frequency of administration based on degree of renal impairment.1 30 33 36 203 227 253

Pediatric patients with impaired renal function: Data insufficient to date to make dosage recommendations.1 253

Scr alone may not be sufficiently accurate to assess degree of renal impairment, especially in geriatric adults;1 dosage preferably should be based on patient’s measured or estimated Clcr.1 253

Adults with Clcr 10–30 mL/minute per 1.73 m2: 1- or 2-g loading dose followed by maintenance doses equal to one-half the usual dose (i.e., 250 mg, 500 mg, or 1 g) given at the usual dosage intervals.1 253

Adults with Clcr <10 mL/minute per 1.73 m2: Loading dose equal to the usual dose (i.e., 500 mg, 1 g, or 2 g) followed by maintenance doses equal to one-fourth the usual dose (i.e., 125 mg, 250 mg, or 500 mg) given at the usual dosage intervals.1 36 253

Adults undergoing hemodialysis: Loading dose equal to the usual dose (i.e., 500 mg, 1 g, or 2 g) followed by maintenance doses equal to one-fourth the usual dose (i.e., 125 mg, 250 mg, or 500 mg) given at the usual dosage intervals.1 36 48 56 In those with serious or life-threatening infections, also give a supplemental dose equal to one-eighth the initial dose (i.e., 62.5 mg, 125 mg, or 250 mg) immediately after each dialysis period.1 30 36 253 276 277 One modeling study suggests that aztreonam 1 g (for MICs up to 4 mg/L) or 2 g (for MICs up to 8 mg/L) daily after hemodialysis would yield adequate concentrations.758

Adults undergoing CAPD: Some clinicians suggest IV loading dose equal to the usual dose (i.e., 500 mg, 1 g, or 2 g) followed by maintenance doses equal to one-fourth the usual dose (i.e., 125 mg, 250 mg, or 500 mg) given at the usual dosage intervals.36 227

Oral Inhalation via Nebulization

Mild, moderate, or severe renal impairment: Dosage adjustments not needed.306

Geriatric Patients

Select dosage with caution because of age-related decreases in hepatic, renal, and/or cardiac function and concomitant disease and drug therapy.1 253

Monitor renal function;1 253 make appropriate dosage adjustments if necessary.1 253

Cautions for Aztreonam

Contraindications

Warnings/Precautions

Hypersensitivity

Immediate hypersensitivity reactions, including anaphylaxis,1 253 bronchospasm,1 253 generalized urticaria with or without palpebral and lingual edema and respiratory impairment,290 295 296 and shock, rash, and eosinophilia,175 reported with parenteral aztreonam.1 175 Toxic epidermal necrolysis reported rarely.1 253

Rash reported with orally inhaled aztreonam.306 Allergic reactions with facial rash, facial swelling, and throat tightness also reported.306

Hypersensitivity reactions may occur in patients with or without prior exposure to the drug.1 253 306

Prior to initiation of therapy, assess whether patient has had previous hypersensitivity reactions to β-lactam antibiotics, other drugs, or allergens.1 253 306 Use with caution in patients hypersensitive to β-lactam antibiotics (e.g., penicillins, cephalosporins, cephamycins).1 253 306

If hypersensitivity reaction occurs, discontinue aztreonam and initiate appropriate treatment (e.g., vasopressors, antihistamines, corticosteroids, maintenance of ventilation).1 253 306 Serious hypersensitivity reactions may require epinephrine and other emergency measures.1 253

Consider possibility that cross-sensitivity to aztreonam may occur in patients with history of hypersensitivity to other β-lactam antibiotics.1 253 306

Clostridioides difficile-associated Diarrhea and Colitis

Treatment with anti-infectives alters normal colon flora and may permit overgrowth of Clostridiodes difficile.1 253 302 303 C. difficile infection (CDI) and C. difficile-associated diarrhea and colitis (CDAD; also known as antibiotic-associated diarrhea and colitis or pseudomembranous colitis) reported with nearly all systemic anti-infectives, including aztreonam, and may range in severity from mild diarrhea to fatal colitis.1 253 302 303 303

Consider CDAD if diarrhea develops during or after therapy and manage accordingly.1 253 302 303 Obtain careful medical history since CDAD may occur as late as 2 months or longer after anti-infective therapy is discontinued.1 253 302 303

If CDAD is suspected or confirmed, discontinue anti-infectives not directed against C. difficile whenever possible.1 253 302 303 Initiate appropriate supportive therapy (e.g., fluid and electrolyte management, protein supplementation), anti-infective therapy directed against C. difficile (e.g., metronidazole, vancomycin), and surgical evaluation as clinically indicated.1 253 302 303

Toxic Epidermal Necrolysis

Toxic epidermal necrolysis reported in a few patients undergoing bone marrow transplant; these patients had multiple risk factors including sepsis and radiation therapy, and were receiving other drugs associated with toxic epidermal necrolysis.1

Selection and Use of Anti-infectives

To reduce development of drug-resistant bacteria and maintain effectiveness of aztreonam and other antibacterials, use only for treatment or prevention of infections proven or strongly suspected to be caused by susceptible bacteria.1 253

When selecting or modifying anti-infective therapy, use results of culture and in vitro susceptibility testing.1 253 In the absence of such data, consider local epidemiology and susceptibility patterns when selecting anti-infectives for empiric therapy.1 253

Because aztreonam has little or no activity against gram-positive bacteria and anaerobes, another anti-infective active against such bacteria should be used concomitantly got empiric treatment of infections that may involve gram-positive bacteria or anaerobes (e.g., gynecologic, intra-abdominal, or respiratory tract infections).1 171 173 183 211 213 214 253

Overgrowth of Nonsusceptible Organisms

Possible emergence and overgrowth of nonsusceptible bacteria (e.g., S. aureus, E. faecalis) or fungi.1 253 Institute appropriate therapy if superinfection occurs.1 253

Precautions Related to Oral Inhalation Therapy

Use only to treat patients with cystic fibrosis who are known to have Ps. aeruginosa in the lungs.306 Use in the absence of known Ps. aeruginosa infection unlikely to provide benefit and increases risk of development of drug-resistant bacteria.306

Safety and efficacy not established in pediatric patients <7 years of age, in patients with FEV1 <25% or >75% of predicted, or in patients colonized with Burkholderia cepacia.306

Consider that bronchospasm is a known complication associated with nebulized therapies, including aztreonam.306 In clinical trials in patients pretreated with a bronchodilator, a reduction of ≥15% in FEV1 reported in 3% of patients immediately following a dose of aztreonam given by oral inhalation via nebulization.306

Some patients with increases in FEV1 during 28-day course of aztreonam oral inhalation therapy were sometimes treated for pulmonary exacerbations when FEV1 declined after the treatment period.306 When evaluating whether change in FEV1 after treatment is caused by a pulmonary exacerbation, consider patient's baseline FEV1 measured prior to initiation of aztreonam oral inhalation therapy and presence of other symptoms.306

Instruct patients to use a bronchodilator prior to administration of aztreonam inhalation solution.306 In patients receiving several inhaled drugs, recommended order is bronchodilator, mucolytics, and, lastly, aztreonam.306

Specific Populations

Pregnancy

No adequate and controlled studies to date in pregnant women.1 253 306 Do not use during pregnancy unless clearly needed.1 253 306

Crosses placenta and enters fetal circulation.1 253 306

Lactation

IV or IM: Low concentrations (<1%) distributed into milk.1 253 Consider temporarily discontinuing breast-feeding during aztreonam therapy.1 253

Oral inhalation via nebulization: Peak plasma concentrations following 75-mg dose by oral inhalation via nebulization are approximately 1% of peak plasma concentrations following 500-mg IV dose.306 Systemic absorption following inhaled administration is likely minimal.306 Effects on the infant or on milk production are unknown.306

Pediatric Use

IV or IM: Use in children 9 months to 16 years of age supported by evidence from adequate and well-controlled studies in adults with additional efficacy, safety, and pharmacokinetic data from noncomparative clinical studies in pediatric patients.1 Adverse effects reported in pediatric patients similar to those reported in adults.1

IV or IM: Data insufficient regarding treatment of septicemia or skin and skin structure infections (where skin infection known or suspected to be caused by H. influenzae type b) in pediatric patients <9 months of age.1 Data also insufficient regarding IM route in pediatric patients or use of the drug in pediatric patients with impaired renal function.1 253

IV or IM: Higher dosage may be warranted in pediatric patients with cystic fibrosis.1

Oral inhalation via nebulization: Safety and efficacy not established in pediatric patients <7 years of age;306 has been used for treatment of newly acquired Ps. aeruginosa respiratory tract infections in a limited number of cystic fibrosis patients 3 months through 6 years of age without unusual adverse effects.318 In clinical trials evaluating aztreonam inhalation therapy in cystic fibrosis patients ≥7 years of age, pyrexia reported more frequently in pediatric patients than in adults.306

Geriatric Use

Insufficient experience in patients ≥65 years of age to determine whether geriatric patients respond differently than younger adults.1 253

Select IV or IM dosage with caution because of the greater frequency of decreased hepatic, renal, and/or cardiac function and of concomitant disease and drug therapy observed in geriatric patients.1 253

Substantially eliminated by kidneys;1 253 risk of toxicity may be greater in patients with impaired renal function.1 253 Since geriatric patients are more likely to have renal impairment, monitor renal function and adjust IV or IM dosage if needed.1 253

Hepatic Impairment

Monitor hepatic function;1 253 276 277 adjustment of IV or IM dosage probably not needed, unless renal function also impaired.32 56 276

Renal Impairment

Monitor renal function.1 253 Adjust IV or IM dosage is adults based on degree of renal impairment.1 253

Common Adverse Effects

IV or IM: Local reactions at injection site (e.g., phlebitis/thrombophlebitis following IV administration or discomfort/swelling following IM administration);1 253 GI effects (diarrhea, nausea, vomiting);1 253 hypersensitivity (rash).1 253

Oral inhalation via nebulization: Cough, nasal congestion, wheezing, bronchospasm, pharyngolaryngeal pain, pyrexia, chest discomfort, rash, abdominal pain, vomiting.306

Drug Interactions

Drug interactions based on parenteral aztreonam.1 253 Formal interaction studies not conducted to date using aztreonam by oral inhalation via nebulization.306

Specific Drugs and Laboratory Tests

Drug or Test

Interaction

Comments

Aminoglycosides

No clinically important effects on aztreonam pharmacokinetics1 253

In vitro evidence of additive or synergistic antibacterial effects against Ps. aeruginosa1 38 48 57 78 88 107 111 112 128 131 140 and some strains of Ps. cepacia48 107 131 Ps. fluorescens,131 or Ps. maltophilia131

In vitro evidence of synergistic antibacterial effects against Enterobacteriaceae (e.g., Enterobacter, E. coli, Klebsiella, Serratia)1 57 78 88 140

In vitro synergism reported occasionally against Acinetobacter, but usually only additive or indifferent131

Indifference reported against gram-positive bacteria (e.g., S. aureus, S. epidermidis, E. faecalis)88 92 131

Monitor renal function, especially if high aminoglycoside dosage used or if therapy is prolonged;1 253 risk of aminoglycoside-associated nephrotoxicity and ototoxicity1 253

Chloramphenicol

In vitro studies using K. pneumoniae indicate chloramphenicol can antagonize bactericidal activity of aztreonam139

If used concomitantly, some clinicians suggest administering chloramphenicol a few hours after aztreonam;139 necessity of this precaution not established139

Clavulanic acid

In vitro evidence of synergistic effects against some β-lactamase-producing Enterobacter, Klebsiella, or B. fragilis;48 88 antagonism also may occur127 276

Concomitant use does not alter in vitro susceptibility of S. aureus to aztreonam since resistance to the drug in these organisms is intrinsic234

Clindamycin

Possible increased total urinary excretion of aztreonam, but other pharmacokinetic parameters not affected154

In vitro evidence of synergistic effects against some strains of E. coli, Klebsiella, or Enterobacter, indifferent or additive effects reported more frequently77

Indifferent or slightly additive effects reported against anaerobic bacteria38

Not considered clinically important1 154 253

Furosemide

Possible increased serum aztreonam concentrations1

Not considered clinically important1

β-lactam antibiotics

Nafcillin: No clinically important pharmacokinetic interactions1 253

In vitro evidence of additive or synergistic antibacterial effects with some β-lactams (piperacillin, cefotaxime) against some strains of Ps. aeruginosa;78 antagonism with imipenem against Ps. aeruginosa92

In vitro evidence of indifferent or only slightly additive effects with some β-lactams (ampicillin, piperacillin, cefotaxime) against Enterobacteriaceae, including Enterobacter, E. coli, S. marcescens, or Klebsiella77 78 92

In vitro evidence of synergism with cefoxitin against some strains of Enterobacter, E. coli, Klebsiella, S. marcescens, Salmonella, or Shigella;77 antagonism also reported against some Enterobacter or S. marcescens77 127

Because of potential for antagonism, do not use β-lactams that are potent inducers of β-lactamase production (e.g., cefoxitin, imipenem) concomitantly with aztreonam1 253

Metronidazole

Possible decreased peak serum concentrations of aztreonam;154 other pharmacokinetic parameters not affected154

In vitro evidence of indifferent or slightly additive effects against anaerobic bacteria38

Not considered clinically important1 154 253

Probenecid

Decreased rate of renal tubular secretion of aztreonam and increased aztreonam concentrations:1 2 34 56 253 decreased binding of aztreonam to plasma proteins1 2 34 56 253

Not sufficient to be of therapeutic benefit1 2 34 56 253

Tests for glucose

Possible false-positive reactions in urine glucose tests using Clinitest, Benedict’s solution, or Fehling’s solution240

Use glucose tests based on enzymatic glucose oxidase reactions (e.g., Clinistix, Tes-Tape)240

Aztreonam Pharmacokinetics

Absorption

Bioavailability

IM: Rapidly and completely absorbed following IM administration;2 6 7 29 46 47 48 56 256 peak serum concentrations generally attained within 1 hour after an IM dose.1 2 6 7 29 46 Peak serum concentrations attained with IM dose are slightly lower than those attained with equivalent IV dose, but serum aztreonam concentrations ≥1 hour after dosing are similar.1 2

Oral inhalation via nebulization: Variable concentrations enter systemic circulation;306 307 308 accumulation does not occur following multiple doses.306 307 308

Special Populations

IV: Pharmacokinetics in pediatric patients ≥9 months of age similar to those in adults.1

Distribution

Extent

IV or IM: Widely distributed into body tissues and fluids.21 46 48 Distributed into skeletal muscle,1 21 25 266 adipose tissue,1 21 266 skin,1 21 bone,1 20 25 gallbladder,1 21 liver,1 21 lungs,1 25 208 kidneys,1 2 22 266 atrial appendage,1 25 intestines,1 21 prostatic tissue,1 24 48 56 myometrium,266 endometrium,1 25 266 fallopian tubes,1 266 ovaries,1 and cervical and vaginal tissue.266 Also distributed into saliva,1 2 56 sputum,48 266 bronchial secretions,1 48 208 226 aqueous humor,2 6 56 and bile,1 2 7 21 31 48 56 and into pericardial,1 25 pleural,1 25 208 peritoneal,1 2 48 56 212 synovial,1 20 and blister fluids.1 2 23 46 48 56

IV: Distributed into CSF in adults and pediatric patients;1 2 15 17 18 19 46 48 56 223 CSF concentrations generally higher in patients with inflamed meninges than in those with uninflamed meninges.2 17 18 46 48 56

Oral inhalation via nebulization: Sputum concentrations exhibit considerable interindividual variation;306 307 308 accumulation does not occur following multiple doses.306 307 308

Crosses the placenta and is distributed into amniotic fluid.1 28 46 48 56

Distributed into milk in low concentrations.1 27 46 48 56

Plasma Protein Binding

46–60% bound to serum proteins in healthy adults1 2 6 10 14 33 34 48 56 234 at serum concentrations of 1–100 mcg/mL.6 10 234

Adults with impaired renal function and decreased serum albumin concentrations: 22–49% bound to serum proteins.13 33 46 48

77% protein binding after oral inhalation via nebulization.306

Elimination

Metabolism

Partially metabolized to several microbiologically inactive metabolites;2 6 7 17 33 46 48 56 no active metabolites have been found in serum or urine.2 6 7 17 29 48 56

Elimination Route

Eliminated principally in urine as unchanged drug1 2 4 6 7 10 23 29 34 46 48 56 212 via both glomerular filtration and tubular secretion.1 2 6 23 33 34 46 48 56 212 Partially excreted in feces,1 2 7 46 48 56 152 presumably via biliary elimination.2 7 23 46 48 56

IM or IV: Approximately 58–74% of a dose excreted in urine unchanged,1 2 3 4 6 7 14 23 33 46 48 56 1–7% excreted as SQ 26,992 (an inactive metabolite),1 2 6 7 14 23 33 48 56 and 3–4% excreted as unidentified inactive metabolites.2 48 Urinary excretion of unchanged drug essentially complete 8–12 hours after single dose,1 4 6 7 10 14 29 34 but SQ 26,992 excreted for up to 48 hours after the dose.7 10 14

IV: Approximately 1% of single dose excreted in feces unchanged,2 7 48 56 3% as SQ 26,992,2 7 and 7.5–10.8% as unidentified inactive metabolites.2 7

Oral inhalation via nebulization: Approximately 10% of total dose excreted unchanged in urine;306 glomerular filtration and tubular secretion equally involved.306

Removed by hemodialysis.2 30 36 46 47 177 203 256 Removed to a lesser extent by peritoneal dialysis.1 36 47 227

Half-life

Adults with normal renal and hepatic function: Distribution half-life averages 0.2–0.7 hours2 4 6 7 9 10 14 29 33 46 48 56 and elimination half-life averages 1.3–2.2 hours.2 4 6 7 9 10 14 23 29 33 34 46 47 48 56

Children 2 months to 12 years of age: Elimination half-life averages 1.7 hours.15

Neonates: Half-life is longer than in older children and adults and is inversely related to age and birthweight.15 In neonates <7 days of age, elimination half-life averages 5.5–9.9 hours in those weighing <2.5 kg5 15 and 2.6 hours in those weighing >2.5 kg.15 In neonates 1 week to 1 month of age, elimination half-life averages 2.4 hours.15

Oral inhalation via nebulization in adults with cystic fibrosis: Plasma elimination half-life of systemically absorbed drug is approximately 2.1 hours.306

Special Populations

Geriatric adults: Elimination half-life is slightly longer than in younger adults1 14 90 266 and ranges from 1.7–4.3 hours in adults 64–82 years of age with renal function normal for their age.14 90 266

Cystic fibrosis patients: May eliminate aztreonam at a faster rate than healthy individuals.46 48 177 269 270 Serum half-life averaged 1–1.3 hours in several patients with cystic fibrosis.177 269 270

Patients with hepatic impairment: Half-life is only slightly prolonged since the liver is a minor elimination pathway for the drug.1 Elimination half-life in patients with cirrhosis but with normal renal function averages 2.2 hours in those with primary biliary cirrhosis and 3.2 hours in those with alcoholic cirrhosis.32

Patients with renal impairment: Serum concentrations of aztreonam are higher and serum half-life prolonged.1 2 30 33 46 47 48 56 203 212 In adults with renal impairment, elimination half-life averages 3.4–3.6, 5.3–5.9, 7.8–7.9, or 8.4–8.7 hours in adults with Clcr of 30–80, 10–29, 3–9, or <2 mL/minute, respectively.30

Stability

Storage

Parenteral

Powder for Injection

Room temperature (20–25°C);1 253 avoid excessive heat.1 253

At a concentration of ≤20 mg/mL, aztreonam is chemically and physically stable for 48 hours at 15–30°C or for 7 days when refrigerated at 2–8°C in the following IV infusion solutions: 0.9% sodium chloride injection; 5 or 10% dextrose injection; Ringer’s; lactated Ringer’s; 5% dextrose and 0.2, 0.45, or 0.9% sodium chloride; (1/6) M sodium lactate; 5 or 10% mannitol; 5% dextrose with lactated Ringer’s; 5% dextrose with Plasma-Lyte M; Ionosol B with 5% dextrose; Isolyte E; Isolyte E with 5% dextrose; Isolyte M with 5% dextrose; Normosol-R; Normosol-R with 5% dextrose; or Normosol-M with 5% dextrose.1 253 At concentrations >20 mg/mL, aztreonam is stable for 48 hours at 2–8°C in sterile water for injection or 0.9% sodium chloride injection; solutions containing >20 mg/mL prepared using other compatible IV solutions should be used immediately.1 253 277

IM solutions prepared using sterile water for injection or 0.9% sodium chloride injection are stable for 48 hours at 15–30°C or for 7 days when refrigerated at 2–8°C. IM injections prepared using bacteriostatic water for injection (with benzyl alcohol or parabens) or bacteriostatic sodium chloride injection (with benzyl alcohol or parabens) should be used immediately after reconstitution.277

Powder for Inhalation Solution

Kit containing single-dose vials of lyophilized powder for inhalation solution and single-dose ampuls of diluent: 2–8°C.306 After removal from refrigerator, kit may be stored at room temperature (up to 25°C) for up to 28 days.306

Protect lyophilized drug from light;306 do not use if stored at room temperature for longer than 28 days.306 Do not use diluent if it is cloudy or contains particles.306

Use immediately following reconstitution.306

Actions and Spectrum

Advice to Patients

Additional Information

The American Society of Health-System Pharmacists, Inc. represents that the information provided in the accompanying monograph was formulated with a reasonable standard of care, and in conformity with professional standards in the field. Readers are advised that decisions regarding use of drugs are complex medical decisions requiring the independent, informed decision of an appropriate health care professional, and that the information contained in the monograph is provided for informational purposes only. The manufacturer’s labeling should be consulted for more detailed information. The American Society of Health-System Pharmacists, Inc. does not endorse or recommend the use of any drug. The information contained in the monograph is not a substitute for medical care.

Preparations

Excipients in commercially available drug preparations may have clinically important effects in some individuals; consult specific product labeling for details.

Please refer to the ASHP Drug Shortages Resource Center for information on shortages of one or more of these preparations.

Aztreonam oral inhalation (Cayston) can only be obtained through designated specialty pharmacies.759 Contact manufacturer or consult the Cayston website ([Web]) for specific availability information.

* available from one or more manufacturer, distributor, and/or repackager by generic (nonproprietary) name

Aztreonam

Routes

Dosage Forms

Strengths

Brand Names

Manufacturer

Oral Inhalation

Kit

Aztreonam 75 mg powder for inhalation solution for nebulization

0.17% sodium chloride diluent

Cayston

Gilead

Parenteral

For injection

1 g*

Azactam

Squibb

Aztreonam for Injection

2 g*

Azactam

Squibb

Aztreonam for Injection

AHFS DI Essentials™. © Copyright 2024, Selected Revisions July 25, 2023. American Society of Health-System Pharmacists, Inc., 4500 East-West Highway, Suite 900, Bethesda, Maryland 20814.

† Off-label: Use is not currently included in the labeling approved by the US Food and Drug Administration.

References

1. Bristol-Meyers Squibb. Azactam (aztreonam) for injection prescribing information. Princeton, NJ; 2021 Mar.

2. Swabb EA. Review of the clinical pharmacology of the monobactam antibiotic aztreonam. Am J Med. 1985; 78(Suppl 2A):11-8. http://www.ncbi.nlm.nih.gov/pubmed/3881946?dopt=AbstractPlus

3. Neu HC. Structure-activity relations of new β-lactam compounds and in vitro activity against common bacteria. Rev Infect Dis. 1983; 5(Suppl 2):S319-36. http://www.ncbi.nlm.nih.gov/pubmed/6342103?dopt=AbstractPlus

4. Swabb EA, Leitz MA, Pilkiewicz FG et al. Pharmacokinetics of the monobactam SQ 26,776 after single intravenous doses in healthy subjects. J Antimicrob Chemother. 1981; 8(Suppl E):131-40. http://www.ncbi.nlm.nih.gov/pubmed/7199041?dopt=AbstractPlus

5. Likitnukul S, McCracken GH, Threlkeld N et al. Pharmacokinetics and plasma bactericidal activity of aztreonam in low-birth-weight infants. Antimicrob Agents Chemother. 1987; 31:81-3. http://www.ncbi.nlm.nih.gov/pubmed/3105443?dopt=AbstractPlus

6. Haroche G, Salvanet A, Lafaix CH et al. Pharmacokinetics of aztreonam in the aqueous humour. J Antimicrob Chemother. 1986; 18:195-8. http://www.ncbi.nlm.nih.gov/pubmed/3759730?dopt=AbstractPlus

7. Swabb EA, Singhvi SM, Leitz MA et al. Metabolism and pharmacokinetics of aztreonam in healthy subjects. Antimicrob Agents Chemother. 1983; 24:394-400. http://www.ncbi.nlm.nih.gov/pubmed/6685455?dopt=AbstractPlus

8. Swabb EA, Sugerman AA, Stern M. Oral bioavailability of the monobactam aztreonam (SQ 26,776) in healthy subjects. Antimicrob Agents Chemother. 1983; 23:548-50. http://www.ncbi.nlm.nih.gov/pubmed/6683094?dopt=AbstractPlus

9. Scully BE, Swabb EA, Neu HC. Pharmacology of aztreonam after intravenous infusion. Antimicrob Agents Chemother. 1983; 24:18-22. http://www.ncbi.nlm.nih.gov/pubmed/6684898?dopt=AbstractPlus

10. Swabb EA, Sugerman AA, McKinstry DN. Multiple-dose pharmacokinetics of the monobactam aztreonam (SQ 26,776) in healthy subjects. Antimicrob Agents Chemother. 1983; 23:125-32. http://www.ncbi.nlm.nih.gov/pubmed/6681947?dopt=AbstractPlus

11. Mattie H, Matze-van der Lans A. Pharmacokinetics of aztreonam in infected patients. J Antimicrob Chemother. 1986; 17:215-9. http://www.ncbi.nlm.nih.gov/pubmed/3700287?dopt=AbstractPlus

12. Jones PG, Bodey GP, Swabb EA et al. Clinical pharmacokinetics of aztreonam in cancer patients. Antimicrob Agents Chemother. 1984; 26:455-61. http://www.ncbi.nlm.nih.gov/pubmed/6542763?dopt=AbstractPlus

13. Janicke DM, Cafarell RF, Parker SW et al. Pharmacokinetics of aztreonam in patients with gram-negative infections. Antimicrob Agents Chemother. 1985; 27:16-20. http://www.ncbi.nlm.nih.gov/pubmed/4039117?dopt=AbstractPlus

14. Creasey WA, Platt TB, Frantz M et al. Pharmacokinetics of aztreonam in elderly male volunteers. Br J Clin Pharmacol. 1985; 19:233-7. http://www.ncbi.nlm.nih.gov/pubmed/4039189?dopt=AbstractPlus

15. Stutman HR, Marks MI, Swabb EA. Single-dose pharmacokinetics of aztreonam in pediatric patients. Antimicrob Agents Chemother. 1984; 26:196-9. http://www.ncbi.nlm.nih.gov/pubmed/6541452?dopt=AbstractPlus

16. Lavoie GY, Bergeron MG. Influence of four modes of administration on penetration of aztreonam, cefuroxime, and ampicillin into interstitial fluid and fibrin clots and on in vivo efficacy against Haemophilus influenzae . Antimicrob Agents Chemother. 1985; 28:404-12. http://www.ncbi.nlm.nih.gov/pubmed/3878128?dopt=AbstractPlus

17. Duma RJ, Berry AJ, Smith SM et al. Penetration of aztreonam into cerebrospinal fluid of patients with and without inflamed meninges. Antimicrob Agents Chemother. 1984; 26:730-3. http://www.ncbi.nlm.nih.gov/pubmed/6542765?dopt=AbstractPlus

18. Greenman RL, Arcey SM, Dickinson GM et al. Penetration of aztreonam into human cerebrospinal fluid in the presence of meningeal inflammation. J Antimicrob Chemother. 1985; 15:637-40. http://www.ncbi.nlm.nih.gov/pubmed/4040132?dopt=AbstractPlus

19. Modai J, Vittecoq D, Decazes JM et al. Penetration of aztreonam into cerebrospinal fluid of patients with bacterial meningitis. Antimicrob Agents Chemother. 1986; 29:281-3. http://www.ncbi.nlm.nih.gov/pubmed/3717933?dopt=AbstractPlus

20. MacLeod CM, Bartley EA, Galante JO et al. Aztreonam penetration into synovial fluid and bone. Antimicrob Agents Chemother. 1986; 29:710-2. http://www.ncbi.nlm.nih.gov/pubmed/3707115?dopt=AbstractPlus

21. Concon RE, Friedhoff LT, Edmiston CE et al. Aztreonam concentration in abdominal tissues and bile. Antimicrob Agents Chemother. 1986; 29:1101-3. http://www.ncbi.nlm.nih.gov/pubmed/3729362?dopt=AbstractPlus

22. Watson AJ, Stout RL, Whelton A. The intrarenal distribution of aztreonam in healthy and diseased kidneys: clinical therapeutic implications. J Infect Dis. 1984; 150:631-5. http://www.ncbi.nlm.nih.gov/pubmed/6541673?dopt=AbstractPlus

23. Wise R, Dyas A, Hegarty A et al. Pharmacokinetics and tissue penetration of azthreonam. Antimicrob Agents Chemother. 1982; 22:969-71. http://www.ncbi.nlm.nih.gov/pubmed/6891575?dopt=AbstractPlus

24. Madsen PO, Dhruv R, Friedhoff LT. Aztreonam concentrations in human prostatic tissue. Antimicrob Agents Chemother. 1984; 26:20-1. http://www.ncbi.nlm.nih.gov/pubmed/6383208?dopt=AbstractPlus

25. Beam TR, Galask RP, Friedhoff LT et al. Aztreonam concentrations in human tissues obtained during thoracic and gynecologic surgery. Antimicrob Agents Chemother. 1986; 30:505-7. http://www.ncbi.nlm.nih.gov/pubmed/3777914?dopt=AbstractPlus

26. Swabb EA, Sugerman AA. Review of single- and multiple-dose pharmacokinetics of the monobactam, aztreonam (SQ 26,776) in healthy subjects. Chemotherapy. 1983; 29:313-21. http://www.ncbi.nlm.nih.gov/pubmed/6684541?dopt=AbstractPlus

27. Fleiss PM, Richwald GA, Gordon J et al. Aztreonam in human serum and breast milk. Br J Clin Pharmacol. 1985; 19:509-11. http://www.ncbi.nlm.nih.gov/pubmed/4039600?dopt=AbstractPlus

28. Hayashi R, Devlin RG, Frantz M et al. Concentration of aztreonam in body fluids in mid-pregnancy. Clin Pharmacol Ther. 1986; 35:246.

29. Swabb EA, Sugerman AA, Platt TB et al. Single-dose pharmacokinetics of the monobactam azthreonam (SQ 26,776) in healthy subjects. Antimicrob Agents Chemother. 1982; 21:944-9. http://www.ncbi.nlm.nih.gov/pubmed/7202343?dopt=AbstractPlus

30. Fillastre JP, Leroy A, Baudoin C et al. Pharmacokinetics of aztreonam in patients with chronic renal failure. Clin Pharmacokinet. 1985; 10:91-100. http://www.ncbi.nlm.nih.gov/pubmed/4038635?dopt=AbstractPlus

31. Martiney OV, Levi JU, Devlin RG. Biliary excretion of aztreonam in patients with biliary tract disease. Antimicrob Agents Chemother. 1984; 25:358-61. http://www.ncbi.nlm.nih.gov/pubmed/6539092?dopt=AbstractPlus

32. MacLeod CM, Bartley EA, Payne JA et al. Effects of cirrhosis on kinetics of aztreonam. Antimicrob Agents Chemother. 1984; 26:493-7. http://www.ncbi.nlm.nih.gov/pubmed/6542764?dopt=AbstractPlus

33. Mihindu JC, Scheld WM, Bolton ND et al. Pharmacokinetics of aztreonam in patients with various degrees of renal dysfunction. Antimicrob Agents Chemother. 1983; 24:252-61. http://www.ncbi.nlm.nih.gov/pubmed/6685452?dopt=AbstractPlus

34. Swabb EA, Sugerman AA, Frantz M et al. Renal handling of the monobactam azthreonam in healthy subjects. Clin Pharmacol Ther. 1983; 33:609-14. http://www.ncbi.nlm.nih.gov/pubmed/6682362?dopt=AbstractPlus

35. Pilkiewicz FG, Remsburg BJ, Fisher SM et al. High-pressure liquid chromatographic analysis of aztreonam in sera and urine. Antimicrob Agents Chemother. 1983; 23:852-6. http://www.ncbi.nlm.nih.gov/pubmed/6684412?dopt=AbstractPlus

36. Gerig JS, Bolton ND, Swabb EA et al. Effect of hemodialysis and peritoneal dialysis on aztreonam pharmacokinetics. Kidney Int. 1984; 26:308-18. http://www.ncbi.nlm.nih.gov/pubmed/6542606?dopt=AbstractPlus

37. Paton TW, Cornish WR, Manuel MA et al. Drug therapy in patients undergoing peritoneal dialysis: clinical pharmacokinetic considerations. Clin Pharmacokinet. 1985; 10:404-26. http://www.ncbi.nlm.nih.gov/pubmed/3899455?dopt=AbstractPlus

38. Sykes RB, Bonner DP. Aztreonam: the first monobactam. Am J Med. 1985; 78(Suppl 2A):2-10. http://www.ncbi.nlm.nih.gov/pubmed/3871589?dopt=AbstractPlus

39. Ekstrom B. Basic design of beta-lactam antibiotics: penams and analogues and monocyclic beta-lactams. Scand J Infect Dis. 1984; 42(Suppl):38-49.

40. Neu HC. Trends in the development of beta-lactam antibiotics. Scand J Infect Dis. 1984; 42(Suppl):7-16.

41. Bonner DP, Sykes RB. Structure activity relationships among the monobactams. J Antimicrob Chemother. 1984; 14:313-27. http://www.ncbi.nlm.nih.gov/pubmed/6389473?dopt=AbstractPlus

42. Breuer H, Cimarusti CM, Denzel T et al. Monobactams—structure-activity relationships leading to SQ 26,776. J Antimicrob Chemother. 1981; 8(Suppl E):21-8. http://www.ncbi.nlm.nih.gov/pubmed/7199044?dopt=AbstractPlus

43. Parker WL, Cimarusti CM, Floyd DM et al. Monobactams: isolation and structure determination. J Antimicrob Chemother. 1981; 8(Suppl E):17-20. http://www.ncbi.nlm.nih.gov/pubmed/7199043?dopt=AbstractPlus

44. Sykes RB, Bonner DP, Bush K et al. Monobactams—monocyclic β-lactam antibiotics produced by bacteria. J Antimicrob Chemother. 1981; 8(Suppl E):1-16. http://www.ncbi.nlm.nih.gov/pubmed/6976959?dopt=AbstractPlus

45. O’sullivan J, Gillum AM, Aklonis CA et al. Biosynthesis of monobactam compounds: origin of the carbon atoms in the β-lactam ring. Antimicrob Agents Chemother. 1982; 21:558-64. http://www.ncbi.nlm.nih.gov/pubmed/6805424?dopt=AbstractPlus

46. Guay DR, Koskoletos C. Aztreonam, a new monobactam antimicrobial. Clin Pharm. 1985; 4:516-26. http://www.ncbi.nlm.nih.gov/pubmed/3902330?dopt=AbstractPlus

47. Hopefl AW. Aztreonam—an overview. Drug Intell Clin Pharm. 1985; 19:171-5. http://www.ncbi.nlm.nih.gov/pubmed/3884302?dopt=AbstractPlus

48. Brogden RN, Heel RC. Aztreonam: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs. 1986; 31:96-130. http://www.ncbi.nlm.nih.gov/pubmed/3512234?dopt=AbstractPlus

49. Marble DA, Bosso JA, Townsend RJ. Stability of clindamycin phosphate with aztreonam, ceftazidime sodium, ceftriaxone sodium, or piperacillin sodium in two intravenous solutions. Am J Hosp Pharm. 1986; 43:1732-6. http://www.ncbi.nlm.nih.gov/pubmed/3529949?dopt=AbstractPlus

50. Riley CM, Lipford LC. Interaction of aztreonam with nafcillin intravenous admixtures. Am J Hosp Pharm. 1986; 43:2221-4. http://www.ncbi.nlm.nih.gov/pubmed/3766577?dopt=AbstractPlus

51. Bell RG, Lipford LC, Massanari MJ et al. Stability of intravenous admixtures of aztreonam and cefoxitin, gentamicin, metronidazole, or tobramycin. Am J Hosp Pharm. 1986; 43:1444-53. http://www.ncbi.nlm.nih.gov/pubmed/3728479?dopt=AbstractPlus

52. Riley CM, James MJ. Stability of intravenous admixtures containing aztreonam and cefazolin. Am J Hosp Pharm. 1986; 43:925-7. http://www.ncbi.nlm.nih.gov/pubmed/3706339?dopt=AbstractPlus

53. James MJ, Riley CM. Stability of intravenous admixtures of aztreonam and clindamycin phosphate. Am J Hosp Pharm. 1985; 42:1984-6. http://www.ncbi.nlm.nih.gov/pubmed/4050817?dopt=AbstractPlus

54. James MJ, Riley CM. Stability of intravenous admixtures of aztreonam and ampicillin. Am J Hosp Pharm. 1985; 42:1095-100. http://www.ncbi.nlm.nih.gov/pubmed/4039889?dopt=AbstractPlus

55. Barry AL, Thornsberry C, Jones RN et al. Aztreonam: antibacterial activity, β-lactamase stability, and interpretive standards and quality control guidelines for disk-diffusion susceptibility tests. Rev Infect Dis. 1985; 7(Suppl 4):S594-604. http://www.ncbi.nlm.nih.gov/pubmed/3909316?dopt=AbstractPlus

56. Swabb EA. Clinical pharmacology of aztreonam in healthy recipients and patients: a review. Rev Infect Dis. 1985; 7(Suppl 4):S605-12.

57. Sykes RB, Bonner DP. Discovery and development of the monobactams. Rev Infect Dis. 1985; 7(Suppl 4):S579-93. http://www.ncbi.nlm.nih.gov/pubmed/3909315?dopt=AbstractPlus

58. Bonner DP, Whitney RR, Baughn CO et al. In-vivo properties of SQ 26,776. J Antimicrob Chemother. 1981; 8(Suppl E):123-30. http://www.ncbi.nlm.nih.gov/pubmed/6976961?dopt=AbstractPlus

59. Georgopapadakou NH, Smith SA, Sykes RB. Mode of action of azthreonam. Antimicrob Agents Chemother. 1982; 21:950-6. http://www.ncbi.nlm.nih.gov/pubmed/6180685?dopt=AbstractPlus

60. Georgopapadakou NH, Smith SA, Cimarusti CM et al. Binding of monobactams to penicillin-binding proteins of Escherichia coli and Staphylococcus aureus: relation to antibacterial activity. Antimicrob Agents Chemother. 1983; 23:98-104. http://www.ncbi.nlm.nih.gov/pubmed/6338822?dopt=AbstractPlus

61. Toma EC, Morisset R, Phaneuf D et al. Aztreonam: correlation between disk diffusion and agar plate dilutions susceptibility tests. Chemotherapy. 1985; 81:451-5.

62. Stamm JM, Hanson CW, Chu DT et al. In vitro evaluation of A-56619 (difloxacin) and A-56620: new aryl-fluoroquinolones. Antimicrob Agents Chemother. 1986; 29:193-200. http://www.ncbi.nlm.nih.gov/pubmed/3087274?dopt=AbstractPlus

63. Thornsberry C. Review of in vitro activity of third-generation cephalosporins and other newer beta-lactam antibiotics against clinically important bacteria. Am J Med. 1985; 79(Suppl 2A):14-20. http://www.ncbi.nlm.nih.gov/pubmed/3927723?dopt=AbstractPlus

64. Strandberg DA, Jorgensen JH, Drutz DJ. Activities of aztreonam and new cephalosporins against infrequently isolated gram-negative bacilli. Antimicrob Agents Chemother. 1983; 24:282-6. http://www.ncbi.nlm.nih.gov/pubmed/6685453?dopt=AbstractPlus

65. Neu HC, Labthavikul P. In vitro antibacterial activity and β-lactamase stability of E-0702, a new cephalosporin. Antimicrob Agents Chemother. 1983; 24:313-20. http://www.ncbi.nlm.nih.gov/pubmed/6605718?dopt=AbstractPlus

66. Neu HC, Labthavikul P. In vitro activity and β-lactamase stability of U-63196E, a novel cephalosporin. Antimicrob Agents Chemother. 1983; 24:375-82. http://www.ncbi.nlm.nih.gov/pubmed/6605719?dopt=AbstractPlus

67. Neu HC, Labthavikul P. In vitro activity and β-lactamase stability of a monobactam, SQ 26,917, compared with those of aztreonam and other agents. Antimicrob Agents Chemother. 1983; 24:227-32. http://www.ncbi.nlm.nih.gov/pubmed/6605715?dopt=AbstractPlus

68. Henry D, Skidmore AG, Ngui-Yen J et al. In vitro activities of enoxacin, ticarcillin plus clavulanic acid, aztreonam, piperacillin, and imipenem and comparison with commonly used antimicrobial agents. Antimicrob Agents Chemother. 1985; 28:259-64. http://www.ncbi.nlm.nih.gov/pubmed/3869433?dopt=AbstractPlus

69. Benson CA, Walton FE, Trenholme GM. Antibacterial activity of Ro 17-2301 and other antimicrobial agents against cefotaxime-resistant aerobic gram-negative bacilli. Antimicrob Agents Chemother. 1986; 29:155-7. http://www.ncbi.nlm.nih.gov/pubmed/3079583?dopt=AbstractPlus

70. Fainstein V, Weaver S, Bodey GP. Comparative in vitro study of SQ 26,776. Antimicrob Agents Chemother. 1982; 21:294-8. http://www.ncbi.nlm.nih.gov/pubmed/6918206?dopt=AbstractPlus

71. Smith BR, LeFrock JL, McCloskey RV et al. Comparative in vitro antimicrobial activity of carumonam, a new monocyclic β-lactam. Antimicrob Agents Chemother. 1986; 29:346-9. http://www.ncbi.nlm.nih.gov/pubmed/3087280?dopt=AbstractPlus

72. Appelbaum PC, Tamim J, Penkuch GA et al. Susceptibility of 324 nonfermentative gram-negative rods to 6 cephalosporins and azthreonam. Chemotherapy. 1983; 29:337-44. http://www.ncbi.nlm.nih.gov/pubmed/6311492?dopt=AbstractPlus

73. Clarke AM, Zemcov SJ. Antibacterial activity of the cephamycin cefotetan: an in-vitro comparison with other β-lactam antibiotics. J Antimicrob Chemother. 1983; 11(Suppl A):67-72. http://www.ncbi.nlm.nih.gov/pubmed/6404881?dopt=AbstractPlus

74. Schell RF, Francisco M, Bihl JA et al. The activity of ceftazidime compared with those of aztreonam, newer cephalosporins and Sch 29482 against nonfermentative gram-negative bacilli. Chemotherapy. 1985; 31:181-90. http://www.ncbi.nlm.nih.gov/pubmed/3888543?dopt=AbstractPlus

75. Bremner DA. Azthreonam activity against gram-negative bacilli. Chemotherapy. 1984; 30:44-8. http://www.ncbi.nlm.nih.gov/pubmed/6537908?dopt=AbstractPlus

76. Sykes RB, Bonner DP, Bush K et al. Azthreonam (SQ 26,776), a synthetic monobactam specifically active against aerobic gram-negative bacteria. Antimicrob Agents Chemother. 1982; 21:85-92. http://www.ncbi.nlm.nih.gov/pubmed/6979307?dopt=AbstractPlus

77. Stutman HR, Welch DF, Scribner RK et al. In vitro antimicrobial activity of aztreonam alone and in combination against bacterial isolates from pediatric patients. Antimicrob Agents Chemother. 1984; 25:212-5. http://www.ncbi.nlm.nih.gov/pubmed/6538772?dopt=AbstractPlus

78. Buesing MA, Jorgensen JH. In vitro activity of aztreonam in combination with newer β-lactams and amikacin against multiply resistant gram-negative bacilli. Antimicrob Agents Chemother. 1984; 25:283-5. http://www.ncbi.nlm.nih.gov/pubmed/6538773?dopt=AbstractPlus

79. Shah PM, Losert-Bruggner B, Stille W. Bactericidal activity of SQ 26776. J Antimicrob Chemother. 1981; 8(Suppl E):77-80. http://www.ncbi.nlm.nih.gov/pubmed/6799484?dopt=AbstractPlus

80. Russell AD. In-vitro studies on SQ 26,776, a new monobactam antibiotic. J Antimicrob Chemother. 1981; 8(Suppl E):81-8. http://www.ncbi.nlm.nih.gov/pubmed/6799485?dopt=AbstractPlus

81. Yourassowsky E, Van der Linden MP, Lismont MJ et al. Growth curve patterns of Escherichia coli and Pseudomonas aeruginosa submitted to different SQ 26,776 concentrations. J Antimicrob Chemother. 1981; 8(Suppl E):89-96. http://www.ncbi.nlm.nih.gov/pubmed/6799486?dopt=AbstractPlus

82. Acar JF, Kitzis MD, Goldstein FW. In-vitro activity of SQ 26,776 against multiply-resistant enterobacteria—preliminary results. J Antimicrob Chemother. 1981; 8(Suppl E):97-101. http://www.ncbi.nlm.nih.gov/pubmed/6276355?dopt=AbstractPlus

83. Phillips I, King A, Shannon K et al. SQ 26,776: in-vitro antibacterial activity and susceptibility to β-lactamases. J Antimicrob Chemother. 1981; 8(Suppl E):103-10. http://www.ncbi.nlm.nih.gov/pubmed/6976960?dopt=AbstractPlus

84. Neu HC, Labthavikul P. Antibacterial activity of a monocyclic β-lactam SQ 26,776. J Antimicrob Chemother. 1981; 8(Suppl E):111-22. http://www.ncbi.nlm.nih.gov/pubmed/6799479?dopt=AbstractPlus

85. Norrby R, Friberg K. Holm SE. In-vitro antibacterial activity of SQ 26,776. J Antimicrob Chemother. 1981; 8(Suppl E):69-76. http://www.ncbi.nlm.nih.gov/pubmed/7199045?dopt=AbstractPlus

86. Reeves DS, Bywater MJ, Holt HA. Antibacterial activity of the monobactam SQ 26,776 against antibiotic resistant enterobacteria, including Serratia spp. J Antimicrob Chemother. 1981; 8(Suppl E):57-68. http://www.ncbi.nlm.nih.gov/pubmed/6799483?dopt=AbstractPlus

87. Livermore DM, Williams JD. In-vitro activity of the monobactam, SQ 26,776, against gram-negative bacteria and its stability to their β-lactamases. J Antimicrob Chemother. 1981; 8(Suppl E):29-37. http://www.ncbi.nlm.nih.gov/pubmed/6799480?dopt=AbstractPlus

88. Wise R, Andrews JM, Hancox J, SQ 26,776, a novel β-lactam: an in-vitro comparison with other antimicrobial agents. J Antimicrob Chemother. 1981; 8(Suppl E):39-47.

89. Percival A, Thomas E, Hart CA et al. In-vitro activity of monobactam, SQ 26,776, against gram-negative bacteria. J Antimicrob Chemother. 1981; 8(Suppl E):49-55. http://www.ncbi.nlm.nih.gov/pubmed/6799482?dopt=AbstractPlus

90. Naber KG, Dette GA, Kees F et al. Pharmacokinetics, in-vitro activity, therapeutic efficacy and clinical safety of aztreonam vs. cefotaxime in the treatment of complicated urinary tract infections. J Antimicrob Chemother. 1986; 17:517-27. http://www.ncbi.nlm.nih.gov/pubmed/3710959?dopt=AbstractPlus

91. Russell AD, Furr JR. Penetration of SQ 26,776, a new monobactam antibiotic, into Escherichia coli and Pseudomonas aeruginosa . J Antimicrob Chemother. 1982; 9:329-30. http://www.ncbi.nlm.nih.gov/pubmed/6806235?dopt=AbstractPlus

92. Ampel NM, Moon-McDermott L, Keating M et al. In-vitro activity of aztreonam in combination with four other antibiotics against gram-negative bacilli and Staphylococcus aureus . J Antimicrob Chemother. 1984; 13:398-9. http://www.ncbi.nlm.nih.gov/pubmed/6539326?dopt=AbstractPlus

93. Goosens H, Vanhoof R, De Mol P et al. In-vitro susceptibility of salmonellae to antimicrobial agents. J Antimicrob Chemother. 1984; 13:559-65. http://www.ncbi.nlm.nih.gov/pubmed/6540771?dopt=AbstractPlus

94. Aronoff SC, Klinger JD. Comparison of cefpiramide (HR-810) and four anti-pseudomonal β-lactam agents against pseudomonas isolates from children with cystic fibrosis. J Antimicrob Chemother. 1985; 15:545-9. http://www.ncbi.nlm.nih.gov/pubmed/3924879?dopt=AbstractPlus

95. van Saene JJ, van Saene HK, Stoutenbeek CP et al. Influence of faeces on the activity of antimicrobial agents used for decontamination of the alimentary canal. Scand J Infect Dis. 1985; 17:295-300. http://www.ncbi.nlm.nih.gov/pubmed/2932792?dopt=AbstractPlus

96. Paradelis AG, Stathopoulos GA, Salpigides GN et al. Antibacterial activity of aztreonam: a synthetic monobactam. A comparative study with thirteen other antibiotics. Methods Find Exp Clin Pharmacol. 1983; 5:375-83. http://www.ncbi.nlm.nih.gov/pubmed/6684718?dopt=AbstractPlus

97. Aldridge KE, Sanders CV. Comparison of the activity of carumonam (RO 17-2301) with other broad-spectrum antibiotics: in vitro antibacterial spectrum, inoculum effect, and synergy studies. Curr Ther Res Clin Exp. 1986; 40:515-27.

98. Friis H, Prag J, Togsverda E et al. Beta-lactamase stability and in vitro activity of aztreonam, with a comparison to 9 other beta-lactam antibiotics and gentamicin. Chemotherapy. 1986; 32:329-35. http://www.ncbi.nlm.nih.gov/pubmed/3488177?dopt=AbstractPlus

99. Rolston K, Alvarez ME, Hoy JF et al. Comparative in vitro activity of cefpirome and other antimicrobial agents against isolates from cancer patients. Chemotherapy. 1986; 32:344-51. http://www.ncbi.nlm.nih.gov/pubmed/3731920?dopt=AbstractPlus

100. Angehrn P. Antibacterial properties of carumonam (Ro 17:2301, AMA-1080), a new sulfonated monocyclic β-lactam antibiotic. Chemotherapy. 1985; 31:440-50. http://www.ncbi.nlm.nih.gov/pubmed/3935396?dopt=AbstractPlus

101. Miller LK, Sanchez PL, Berg SW et al. Effectiveness of aztreonam, a new monobactam antibiotic, against penicillin-resistant gonococci. J Infect Dis. 1983; 148:6612.

102. Strandberg DA, Jorgensen JH, Drutz DJ. Activity of aztreonam and new beta-lactam antibiotics against penicillinase-producing Neisseria gonorrhoeae . Curr Ther Res Clin Exp. 1983; 34:955-9.

103. Khan MY, Gruninger RP, Nelson SM et al. Comparative in vito activity of cefodizime, ceftazidime, aztreonam, and other selected antimicrobial agents against Neisseria gonorrhoeae . Antimicrob Agents Chemother. 1983; 23:477-8. http://www.ncbi.nlm.nih.gov/pubmed/6303215?dopt=AbstractPlus

104. Bassey CM, Baltch AL, Smith RP et al. Comparative in vitro activities of enoxacin (CI-919, AT-2266) and eleven antipseudomonal agents against aminoglycoside-susceptible and -resistant Pseudomonas aeruginosa strains. Antimicrob Agents Chemother. 1984; 26:417-8. http://www.ncbi.nlm.nih.gov/pubmed/6439116?dopt=AbstractPlus

105. Garcia I. Fainstein V, LeBlanc B et al. In vitro activities of new β-lactam antibiotics against Acinetobacter spp. Antimicrob Agents Chemother. 1983; 24:297-9. http://www.ncbi.nlm.nih.gov/pubmed/6638992?dopt=AbstractPlus

106. Thompson KD, O’Keefe JP, Tatarowicz WA. In vitro comparison of amifloxacin and six other antibiotics against aminoglycoside-resistant Pseudomonas aeruginosa . Antimicrob Agents Chemother. 1984; 26:275-6. http://www.ncbi.nlm.nih.gov/pubmed/6435518?dopt=AbstractPlus

107. Aronoff SC, Klinger JD. In vitro activities of aztreonam, piperacillin, and ticarcillin combined with amikacin against amikacin-resistant Pseudomonas aeruginosa and P. cepacia isolates from children with cystic fibrosis. Antimicrob Agents Chemother. 1984; 25:279-80. http://www.ncbi.nlm.nih.gov/pubmed/6561954?dopt=AbstractPlus

108. Wu DH, Baltch AL, Smith RP. In vitro comparison of Pseudomonas aeruginosa isolates with various susceptibilities to aminoglycosides and ten β-lactam antibiotics. Antimicrob Agents Chemother. 1984; 25:488-90. http://www.ncbi.nlm.nih.gov/pubmed/6428308?dopt=AbstractPlus

109. Gordts B, Vandenborre C, VanderAuwera PH et al. Comparison between the in-vitro activity of new agents on Pseudomonas aeruginosa isolates from cystic fibrosis patients with other chronic infections. J Antimicrob Chemother. 1984; 14:25-9. http://www.ncbi.nlm.nih.gov/pubmed/6434504?dopt=AbstractPlus

110. Campos P, Vera A, Martin-Luengo F. In vitro activity of azthreonam and Ro 17-2301 against multiresistant Pseudomonas aeruginosa strains. Eur J Clin Microbiol. 1985; 4:71-2. http://www.ncbi.nlm.nih.gov/pubmed/3921374?dopt=AbstractPlus

111. Zar FA, Kany RJ. In vitro studies of investigational β-lactams as possible therapy for Pseudomonas aeruginosa endocarditis. Antimicrob Agents Chemother. 1985; 27:1-3. http://www.ncbi.nlm.nih.gov/pubmed/3920956?dopt=AbstractPlus

112. Lerner SA, Dudek EJ, Boisvert WE et al. Effect of highly potent antipseudomonal β-lactam agents alone and in combination with aminoglycosides against Pseudomonas aeruginosa . Rev Infect Dis. 1984; 6(Suppl 3):S678-88. http://www.ncbi.nlm.nih.gov/pubmed/6443769?dopt=AbstractPlus

113. Elliott TS, Greenwood D. The morphological response of Pseudomonas aeruginosa to azthreonam, cefoperazone, ceftazidime and N-formimidoyl thienamycin. J Med Microbiol. 1984; 17:159-69. http://www.ncbi.nlm.nih.gov/pubmed/6423826?dopt=AbstractPlus

114. Preblud SR, Gill CJ, Campos JM. Bactericidal activities of chloramphenicol and eleven other antibiotics against Salmonella spp. Antimicrob Agents Chemother. 1984; 25:327-30. http://www.ncbi.nlm.nih.gov/pubmed/6372681?dopt=AbstractPlus

116. Chow AW, Cheng N, Bartlett KH. In vitro susceptibility of Clostridium difficile to new β-lactam and quinolone antibiotics. Antimicrob Agents Chemother. 1985; 28:842-4. http://www.ncbi.nlm.nih.gov/pubmed/4083868?dopt=AbstractPlus

117. Weinstein MP. Comparative in vitro activity of ciprofloxacin and other antimicrobial agents against aminoglycoside-resistant gram-negative rods and microorganisms isolated from patients with bacteremia. Chemotherapy. 1986; 32:446-52. http://www.ncbi.nlm.nih.gov/pubmed/3757586?dopt=AbstractPlus

118. Richter J. In vitro activity of ciprofloxacin, azthreonam and ceftazidime against Serratia marcescens and Pseudomonas aeruginosa . Eur J Clin Microbiol. 1984; 3:368-9. http://www.ncbi.nlm.nih.gov/pubmed/6436021?dopt=AbstractPlus

119. Goosens H, De Mol P, Coignau H et al. Comparative in vitro activities of aztreonam, ciprofloxacin, norfloxacin, ofloxacin, HR 810 (a new cephalosporin), RU28965 (a new macrolide), and other agents against enteropathogens. Antimicrob Agents Chemother. 1985; 27:388-92. http://www.ncbi.nlm.nih.gov/pubmed/3158276?dopt=AbstractPlus

120. Ruckdeschel G, Ehret W, Ahl A. Susceptibility of Legionella spp. to imipenem and 27 other beta-lactam antibiotics. Eur J Clin Microbiol. 1984; 3:463-7. http://www.ncbi.nlm.nih.gov/pubmed/6594234?dopt=AbstractPlus

121. Gutmann L, Goldstein FW, Kitzis MD et al. Susceptibility of Nocardia asteroides to 46 antibiotics, including 22 β-lactams. Antimicrob Agents Chemother. 1983; 23:248-51. http://www.ncbi.nlm.nih.gov/pubmed/6340602?dopt=AbstractPlus

122. Scribner RK, Marks MI, Weber A et al. Yersinia enterocolitica: comparative in vitro activities of seven new β-lactam antibiotics. Antimicrob Agents Chemother. 1982; 22:140-1. http://www.ncbi.nlm.nih.gov/pubmed/7125625?dopt=AbstractPlus

123. Fainstein V, Weaver S, Bodey GP. In vitro susceptibilities of Aeromonas hydrophila against new antibiotics. Antimicrob Agents Chemother. 1982; 22:513-4. http://www.ncbi.nlm.nih.gov/pubmed/7137987?dopt=AbstractPlus

124. Weisholtz S, Tomasz A. Response of Legionella pneumophila to β-lactam antibiotics. Antimicrob Agents Chemother. 1985; 27:695-700. http://www.ncbi.nlm.nih.gov/pubmed/2409915?dopt=AbstractPlus

125. Palenque E, Otero JR, Noriega AR. In vitro susceptibility of Brucella melitensis to new cephalosporins crossing the blood-brain barrier. Antimicrob Agents Chemother. 1986; 29:182-3. http://www.ncbi.nlm.nih.gov/pubmed/3729331?dopt=AbstractPlus

126. Rolston KV, Bodey GP. In vitro susceptibility of Acinetobacter species to various antimicrobial agents. Antimicrob Agents Chemother. 1986; 30:769-70. http://www.ncbi.nlm.nih.gov/pubmed/3800353?dopt=AbstractPlus

127. Gutmann L, Williamson R, Kitzis MD et al. Synergism and antagonism in double beta-lactam antibiotic combinations. Am J Med. 1986; 80(Suppl 5C):21-9. http://www.ncbi.nlm.nih.gov/pubmed/3487247?dopt=AbstractPlus

128. Giamarellou H. Aminoglycosides plus beta-lactams against gram-negative organisms: evaluation of in vitro synergy and chemical interactions. Am J Med. 1986; 80(Suppl 6B):126-36. http://www.ncbi.nlm.nih.gov/pubmed/3088998?dopt=AbstractPlus

129. Berk SL, Alvarez S, Ortega G et al. Clinical and microbiologic consequences of amikacin use during a 42-month period. Arch Intern Med. 1986; 146:538-41. http://www.ncbi.nlm.nih.gov/pubmed/3954526?dopt=AbstractPlus

130. Jones RN, Barry AL, Thornsberry C et al. The anti-microbial activity, beta-lactamase stability, and disk diffusion susceptibility testing of carumonam (RO 17-2301, AMA-1080), a new monobactam. Am J Clin Pathol. 1986; 86:608-18. http://www.ncbi.nlm.nih.gov/pubmed/3096130?dopt=AbstractPlus

131. Just HM, Phillips E, Bassler M et al. Combination effect of azthreonam with four aminoglycosides on nosocomial gram-positive cocci and non-fermenting gram-negative bacteria. Eur J Clin Microbiol. 1982; 1:371-4. http://www.ncbi.nlm.nih.gov/pubmed/6891634?dopt=AbstractPlus

132. Sanders CC, Watanakunakorn C. Emergence of resistance to β-lactams, aminoglycosides, and quinolones during combination therapy for infection due to Serratia marcescens . J Infect Dis. 1986; 153:617-9. http://www.ncbi.nlm.nih.gov/pubmed/3512733?dopt=AbstractPlus

133. Veringa EM, van der Waaij D. Biological inactivation by faeces of antimicrobial drugs applicable in selective decontamination of the digestive tract. J Antimicrob Chemother. 1984; 14:605-12. http://www.ncbi.nlm.nih.gov/pubmed/6520061?dopt=AbstractPlus

134. Elliott TS, Eley A, Cowlishaw A. Stability of gentamicin in combination with selected new β-lactam antibiotics. J Antimicrob Chemother. 1984; 14:668. http://www.ncbi.nlm.nih.gov/pubmed/6520064?dopt=AbstractPlus

135. Brorson, JE, Larsson P. Cefoxitin and imipenem (N-formimidoyl thienamycin) can be antagonistic to aztreonam. J Antimicrob Chemother. 1984; 14:667-71. http://www.ncbi.nlm.nih.gov/pubmed/6596302?dopt=AbstractPlus

136. Stiver HG, Bartlett KH, Chow AW. Comparison of susceptibility of gentamicin-resistant and -susceptible Acinetobacter anitratus to 15 alternative antibiotics. Antimicrob Agents Chemother. 1986; 30:624-5. http://www.ncbi.nlm.nih.gov/pubmed/3789698?dopt=AbstractPlus

137. Gutmann L, Vincent S, Billot-Klein D et al. Involvement of penicillin-binding protein 2 with other penicillin-binding proteins in lysis of Escherichia coli by some β-lactam antibiotics alone and in synergistic lytic effect of amdinocillin (mecillinam). Antimicrob Agents Chemother. 1986; 30:906-12. http://www.ncbi.nlm.nih.gov/pubmed/3545069?dopt=AbstractPlus

138. Chalkley LJ, Koornhof HJ. Antimicrobial activity of ciprofloxacin against Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus determined by the killing curve method: antibiotic comparisons and synergistic interactions. Antimicrob Agents Chemother. 1985; 28:331-42. http://www.ncbi.nlm.nih.gov/pubmed/2939797?dopt=AbstractPlus

139. Brown TH, Alford HR. Antagonism by chloramphenicol of broad-spectrum β-lactam antibiotics against Klebsiella pneumoniae . Antimicrob Agents Chemother. 1984; 25:405-7. http://www.ncbi.nlm.nih.gov/pubmed/6375551?dopt=AbstractPlus

140. Van Laethem Y, Husson M, Klastersky J. Serum bactericidal activity of aztreonam, cefoperazone, and amikacin, alone or in combination, against Escherichia coli, Klebsiella pneumoniae, Serratia marcescens, and Pseudomonas aeruginosa . Antimicrob Agents Chemother. 1984; 26:224-7. http://www.ncbi.nlm.nih.gov/pubmed/6435515?dopt=AbstractPlus

141. Eng RH, Smith SM, Cerubin C. Inoculum effect of new β-lactam antibiotics on Pseudomonas aeruginosa . Antimicrob Agents Chemother. 1984; 26:42-7. http://www.ncbi.nlm.nih.gov/pubmed/6433787?dopt=AbstractPlus

142. Eng RH, Cherubin C, Smith SM et al. Inoculum effect of β-lactam antibiotics on Enterobacteriaceae. Antimicrob Agents Chemother. 1985; 28:601-6. http://www.ncbi.nlm.nih.gov/pubmed/4091525?dopt=AbstractPlus

143. Goldstein FW, Chumpitaz JC, Guevara JM et al. Plasmid-mediated resistance to multiple antibiotics in Salmonella typhi . J Infect Dis. 1986; 153:261-5. http://www.ncbi.nlm.nih.gov/pubmed/3944481?dopt=AbstractPlus

144. Hart CA, Percival A. Resistance to cephalosporins among gentamicin-resistant klebsiellae. J Antimicrob Chemother. 1982; 9:275-86. http://www.ncbi.nlm.nih.gov/pubmed/6979537?dopt=AbstractPlus

145. Cullmann W, Opferkuch W, Stieglitz M et al. Influence of spontaneous and inducible β-lactamase production on the antimicrobial activity of recently developed β-lactam compounds. Chemotherapy. 1984; 30:175-81. http://www.ncbi.nlm.nih.gov/pubmed/6610539?dopt=AbstractPlus

146. Cuchural GJ, Malamy MH, Tally FP. β-Lactamase-mediated imipenem resistance in Bacteroides fragilis . Antimicrob Agents Chemother. 1986; 30:645-8. http://www.ncbi.nlm.nih.gov/pubmed/3492173?dopt=AbstractPlus

147. Dworzack DL, Bartelt MA, Bailey RT et al. Emergence of resistance to aztreonam. Clin Pharm. 1984; 3:467-8. http://www.ncbi.nlm.nih.gov/pubmed/6541543?dopt=AbstractPlus

148. Chandrasekar PH, Smith BR, LeFrock JL et al. Enterococcal superinfection and colonization with aztreonam therapy. Antimicrob Agents Chemother. 1984; 26:280-2. http://www.ncbi.nlm.nih.gov/pubmed/6541454?dopt=AbstractPlus

149. Borgeron MG, Lavoie GY. Tolerance of Haemophilus influenzae to β-lactam antibiotics. Antimicrob Agents Chemother. 1985; 28:320-5. http://www.ncbi.nlm.nih.gov/pubmed/3879660?dopt=AbstractPlus

150. Aronoff SC, Shlaes DM. Factors that influence the evolution of β-lactam resistance in β-lactamase-inducible strains of Enterobacter cloacae and Pseudomonas aeruginosa . J Infect Dis. 1987; 155:936-41. http://www.ncbi.nlm.nih.gov/pubmed/3104483?dopt=AbstractPlus

151. Saxon A, Hassner A, Swabb EA et al. Lack of cross-reactivity between aztreonam, a monobactam antibiotic, and penicillin in penicillin-allergic subjects. J Infect Dis. 1984; 149:16-22. http://www.ncbi.nlm.nih.gov/pubmed/6537963?dopt=AbstractPlus

152. Giuliano M, Barza M, Jacobus NV et al. Effect of broad-spectrum parenteral antibiotics on composition of intestinal microflora of humans. Antimicrob Agents Chemother. 1987; 31:202-6. http://www.ncbi.nlm.nih.gov/pubmed/3566249?dopt=AbstractPlus

153. Tartaglione TA, Duma RJ, Qureshi GD. In vitro and in vivo studies of the effect of aztreonam on platelet function and coagulation in normal volunteers. Antimicrob Agents Chemother. 1986; 30:73-7. http://www.ncbi.nlm.nih.gov/pubmed/3752983?dopt=AbstractPlus

154. Creasey WA, Adamovics J, Dhruv R et al. Pharmacokinetic interaction of aztreonam with other antibiotics. J Clin Pharmacol. 1984; 24:174-80. http://www.ncbi.nlm.nih.gov/pubmed/6539343?dopt=AbstractPlus

155. LeBel M, Paone RP, Lewis GP. Lack of interference of five new beta-lactam antibiotics with serum creatinine determination. Drug Intell Clin Pharm. 1983; 17:908-10. http://www.ncbi.nlm.nih.gov/pubmed/6317326?dopt=AbstractPlus

156. Jones PG, Bodey GP, Swabb EA et al. Effect of aztreonam on throat and stool flora of cancer patients. Antimicrob Agents Chemother. 1984; 26:941-3. http://www.ncbi.nlm.nih.gov/pubmed/6543108?dopt=AbstractPlus

157. Adkinson NF, Swabb EA, Sugerman AA. Immunology of the monobactam aztreonam. Antimicrob Agents Chemother. 1984; 25:93-7. http://www.ncbi.nlm.nih.gov/pubmed/6538398?dopt=AbstractPlus

158. Keim GR, Sibley PL, Hines FA et al. Parenteral toxicological profile of the monocyclic β-lactam antibiotic SQ 26,776 in mice, rats and dogs. J Antimicrob Chemother. 1981; 8(Suppl E):141-6. http://www.ncbi.nlm.nih.gov/pubmed/7199042?dopt=AbstractPlus

159. Stutman HR, Parker KM, Marks MI. Potential of moxalactam and other new antimicrobial agents for bilirubin-albumin displacement in neonates. Pediatrics. 1985; 75:294-8. http://www.ncbi.nlm.nih.gov/pubmed/3155833?dopt=AbstractPlus

160. Sattler FR, Moyer JE, Schramm M et al. Aztreonam compared with gentamicin for treatment of serious urinary tract infections. Lancet. 1984; 1:1315-8. http://www.ncbi.nlm.nih.gov/pubmed/6145024?dopt=AbstractPlus

161. Giamarellou H, Galanakis N, Douzinas E et al. Evaluation of aztreonam in difficult-to-treat infections with prolonged posttreatment follow-up. Antimicrob Agents Chemother. 1984; 26:245-9. http://www.ncbi.nlm.nih.gov/pubmed/6541453?dopt=AbstractPlus

162. Webb DW, Wyle FA. Randomized comparative study of aztreonam and cefamandole in the treatment of urinary tract infections. Curr Ther Res Clin Exp. 1984; 36:113-8.

163. Torres A, Ramirez-Ronda CH. Aztreonam in the treatment of serious gram-negative infections. Curr Ther Res Clin Exp. 1984; 36:875-81.

164. Pierard D, Boelaert J, Van Landuyt HW et al. Aztreonam treatment of gram-negative septicemia. Antimicrob Agents Chemother. 1986; 29:359-61. http://www.ncbi.nlm.nih.gov/pubmed/3717938?dopt=AbstractPlus

165. Glupczynski Y, Prigogine T, Schmerber J et al. Clinical and microbiological evaluation of aztreonam in the treatment of lower respiratory tract infections caused by gram-negative bacilli. Curr Ther Res Clin Exp. 1985; 38:885-92.

166. Simons WJ, Lee TJ. Treatment of gram-negative infections with aztreonam. Am J Med. 1985; 78(Suppl 2A):27-30. http://www.ncbi.nlm.nih.gov/pubmed/4038577?dopt=AbstractPlus

167. Greenberg RN, Reilly PM, Luppen KL et al. Aztreonam therapy for gram-negative pneumonia. Am J Med. 1985; 78(Suppl 2A):31-3. http://www.ncbi.nlm.nih.gov/pubmed/3918444?dopt=AbstractPlus

168. Schentag JJ, Vari AJ, Winslade NE et al. Treatment with aztreonam or tobramycin in critical care patients with nosocomial gram-negative pneumonia. Am J Med. 1985; 78(Suppl 2A):34-41. http://www.ncbi.nlm.nih.gov/pubmed/3881947?dopt=AbstractPlus

169. Rodriguez JR, Ramirez-Ronda CH. Efficacy and safety of aztreonam versus tobramycin for aerobic gram-negative bacilli lower respiratory tract infections. Am J Med. 1985; 78(Suppl 2A):42-3. http://www.ncbi.nlm.nih.gov/pubmed/4038578?dopt=AbstractPlus

170. Childs SJ. Aztreonam in the treatment of urinary tract infection. Am J Med. 1985; 78(Suppl 2A):44-6. http://www.ncbi.nlm.nih.gov/pubmed/3881948?dopt=AbstractPlus

171. Pastorek JG, Cole C, Aldridge KE et al. Aztreonam plus clindamycin as therapy for pelvic infections in women. Am J Med. 1985; 78(Suppl 2A):47-50. http://www.ncbi.nlm.nih.gov/pubmed/4038579?dopt=AbstractPlus

172. Pribyl C, Salzer R, Beskin J et al. Aztreonam in the treatment of serious orthopedic infections. Am J Med. 1985; 78(Suppl 2A):51-6. http://www.ncbi.nlm.nih.gov/pubmed/3881949?dopt=AbstractPlus

173. Henry SA, Bendush CB. Aztreonam: worldwide overview of the treatment of patients with gram-negative infections. Am J Med. 1985; 78(Suppl 2A):57-64. http://www.ncbi.nlm.nih.gov/pubmed/3881950?dopt=AbstractPlus

174. Allan JD, Moellering RC. Antimicrobial combinations in the therapy of infections due to gram-negative bacilli. Am J Med. 1985; 78(Suppl 2A):65-76. http://www.ncbi.nlm.nih.gov/pubmed/3918445?dopt=AbstractPlus

175. Romero-Vivas J, Rodriguez-Creixems M, Bouza E et al. Evaluation of aztreonam in the treatment of severe bacterial infections. Antimicrob Agents Chemother. 1985; 28:222-6. http://www.ncbi.nlm.nih.gov/pubmed/3834832?dopt=AbstractPlus

176. LeFrock JL, Smith BR, Chandrasekar P et al. Efficacy and safety of aztreonam in the treatment of serious gram-negative bacterial infections. Arch Intern Med. 1987; 147:325-8. http://www.ncbi.nlm.nih.gov/pubmed/3813751?dopt=AbstractPlus

177. Scully BE, Neu HC. Use of aztreonam in the treatment of serious infections due to multiresistant gram-negative organisms, including Pseudomonas aeruginosa . Am J Med. 1985; 78:251-61. http://www.ncbi.nlm.nih.gov/pubmed/4038574?dopt=AbstractPlus

178. Stutman HR, Chartrand SA, Tolentino T et al. Aztreonam therapy for serious gram-negative infections in children. Am J Dis Child. 1986; 140:1147-51. http://www.ncbi.nlm.nih.gov/pubmed/3766490?dopt=AbstractPlus

179. Rusconi F, Assael BM, Boccazzi A et al. Aztreonam in the treatment of severe urinary tract infections in pediatric patients. Antimicrob Agents Chemother. 1986; 30:310-4. http://www.ncbi.nlm.nih.gov/pubmed/3094442?dopt=AbstractPlus

180. Jones PG, Rolston KV, Fainstein V et al. Aztreonam therapy in neutropenic patients with cancer. Am J Med. 1986; 81:243-8. http://www.ncbi.nlm.nih.gov/pubmed/3526885?dopt=AbstractPlus

181. Duff P. Pathophysiology and management of postcesarean endomyometritis. Obstet Gynecol. 1986; 67:269-76. http://www.ncbi.nlm.nih.gov/pubmed/3511414?dopt=AbstractPlus

182. Dodson MG, Faro S, Gentry LO. Treatment of acute pelvic inflammatory disease with aztreonam, a new monocyclic β-lactam antibiotic, and clindamycin. Obstet Gynecol. 1986; 67:657-62. http://www.ncbi.nlm.nih.gov/pubmed/3083313?dopt=AbstractPlus

183. Gibbs RS, Blanco JD, Lipscomb KA et al. Aztreonam versus gentamicin, each with clindamycin, in the treatment of endometritis. Obstet Gynecol. 1985; 65:825-9. http://www.ncbi.nlm.nih.gov/pubmed/3889748?dopt=AbstractPlus

184. Winston DJ, Ho WG, Champlin RE et al. Ureidopenicillins, aztreonam, and thienamycin: efficacy as single-drug therapy of severe infections and potential as components of combined therapy. J Antimicrob Chemother. 1986; 17(Suppl A):55-66. http://www.ncbi.nlm.nih.gov/pubmed/3086277?dopt=AbstractPlus

185. Fainstein V, Bodey GP. Single-agent therapy for infections in neutropenic cancer patients. Am J Med. 1985; 79(Suppl 2A):83-8. http://www.ncbi.nlm.nih.gov/pubmed/3895923?dopt=AbstractPlus

186. Gudiol F, Pallares R, Ariza X et al. Comparative clinical evaluation of aztreonam versus aminoglycosides in gram-negative septicaemia. J Antimicrob Chemother. 1986; 17:661-71. http://www.ncbi.nlm.nih.gov/pubmed/3722035?dopt=AbstractPlus

187. Richter J, Vaughan-Neil EF. Treatment of Salmonella carrier with aztreonam. J Antimicrob Chemother. 1984; 3:403.

188. Phipps JH, Osborn DE, Mitchell CJ. Treatment of urinary tract infections with aztreonam. J Antimicrob Chemother. 1985; 16:678. http://www.ncbi.nlm.nih.gov/pubmed/3935640?dopt=AbstractPlus

189. Davies BI, Maesen FP, Teengs JP. Aztreonam in patients with acute purulent exacerbations of chronic bronchitis: failure to prevent emergence of pneumococcal infections. J Antimicrob Chemother. 1985; 15:375-84. http://www.ncbi.nlm.nih.gov/pubmed/3922936?dopt=AbstractPlus

190. Tsouroutsoglou W, Sion ML, Stathopoulos GA et al. Comparative study of aztreonam and cefamandole in the treatment of serious urinary tract infections. Methods Find Exp Clin Pharmacol. 1983; 5:385-90. http://www.ncbi.nlm.nih.gov/pubmed/6684719?dopt=AbstractPlus

191. Gillenwater JY. Use of beta-lactam antibiotics in urinary tract infections. J Urol. 1983; 129:457-60. http://www.ncbi.nlm.nih.gov/pubmed/6550636?dopt=AbstractPlus

192. Greenberg RN, Reilly PM, Luppen KL et al. Treatment of serious gram-negative infections with aztreonam. J Infect Dis. 1984; 150:623-30. http://www.ncbi.nlm.nih.gov/pubmed/6541672?dopt=AbstractPlus

193. de Vries-Hospers HG, Welling GW, Swabb EA et al. Selective decontamination of the digestive tract with aztreonam: a study of 10 healthy volunteers. J Infect Dis. 1984; 150:636-42. http://www.ncbi.nlm.nih.gov/pubmed/6541674?dopt=AbstractPlus

194. Kline MW, Kaplan SL, Mason EO. Aztreonam therapy of gram-negative infections predominantly of the urinary tract in children. Curr Ther Res Clin Exp. 1986; 39:625-31.

195. Barriere SL. Therapeutic considerations in using combinations of newer β-lactam antibiotics. Clin Pharm. 1986; 5:24-33. http://www.ncbi.nlm.nih.gov/pubmed/3512153?dopt=AbstractPlus

196. Hortling L, Sipila R. Multiresistant Serratia marcescens peritonitis in a patient on continuous ambulatory peritoneal dialysis (CAPD) successfully treated with azthreonam (S 26,776) a new monobactam antibiotic. Clin Nephrol. 1984; 21:355. http://www.ncbi.nlm.nih.gov/pubmed/6380850?dopt=AbstractPlus

197. Evans DT, Crooks AJ, Holman RA et al. Treatment of uncomplicated gonorrhoea with single dose aztreonam. Genitourin Med. 1986; 62:318-20. http://www.ncbi.nlm.nih.gov/pubmed/3095216?dopt=AbstractPlus

198. Moellering RC. Have the new beta-lactams rendered the aminoglycosides obsolete for the treatment of serious nosocomial infections? Am J Med. 1986; 80(Suppl 6B):44-7. (IDIS 218318)

199. Lagast H, Klastersky J, Kains JP et al. Empiric antimicrobial therapy with aztreonam or ceftazidime in gram-negative septicemia. Am J Med. 1986; 80(Suppl 5C):79-84. http://www.ncbi.nlm.nih.gov/pubmed/3521272?dopt=AbstractPlus

200. Gaya H. Combination therapy and monotherapy in the treatment of severe infection in the immunocompromised host. Am J Med. 1986; 80(Suppl 6B):149-55. http://www.ncbi.nlm.nih.gov/pubmed/3728525?dopt=AbstractPlus

201. Nichols RL. Management of intra-abdominal sepsis. Am J Med. 1986; 80(Suppl 6B):204-9. http://www.ncbi.nlm.nih.gov/pubmed/3524217?dopt=AbstractPlus

202. Brumfitt W, Hamilton-Miller JM, Dixson S et al. Aztreonam, the first of a unique class of β-lactam antibiotics: in vitro activity. Am J Obstet Gynecol. 1983; 146:712-4. http://www.ncbi.nlm.nih.gov/pubmed/6683468?dopt=AbstractPlus

203. Sattler FR, Schramm M, Swabb EA. Safety of aztreonam and SQ 26,992 in elderly patients with renal insufficiency. Rev Infect Dis. 1985; 7(Suppl 4):S622-7.

204. van der Waaij D. Selective decontamination of the digestive tract with oral aztreonam and temocillin. Rev Infect Dis. 1985; 7(Suppl 4):S628-34. http://www.ncbi.nlm.nih.gov/pubmed/3909318?dopt=AbstractPlus

205. Newman TJ, Dreslinski GR, Tadros SS. Safety profile of aztreonam in clinical trials. Rev Infect Dis. 1985; 7(Suppl 4):S648-55. http://www.ncbi.nlm.nih.gov/pubmed/2934785?dopt=AbstractPlus

206. Nolen TM, Phillips HL, Hall HJ. Comparison of aztreonam and tobramycin in the treatment of lower respiratory tract infections caused by gram-negative bacilli. Rev Infect Dis. 1985; 7(Suppl 4):S666-8. http://www.ncbi.nlm.nih.gov/pubmed/3909321?dopt=AbstractPlus

207. Scully BE, Ores CN, Prince AS et al. Treatment of lower respiratory tract infections due to Pseudomonas aeruginosa in patients with cystic fibrosis. Rev Infect Dis. 1985; 7(Suppl 4):S669-74. http://www.ncbi.nlm.nih.gov/pubmed/3909322?dopt=AbstractPlus

208. Swabb EA, Cone CO, Muir JG. Summary of worldwide clinical trials of aztreonam in patients with lower respiratory tract infections. Rev Infect Dis. 1985; 7(Suppl 4):S675-8.

209. Gibbs RS, Blanco JD, Bernstein S. Role of aerobic gram-negative bacilli in endometritis after cesarean section. Rev Infect Dis. 1985; 7(Suppl 4):S690-5. http://www.ncbi.nlm.nih.gov/pubmed/3909325?dopt=AbstractPlus

210. Dodson MG, Faro S. The polymicrobial etiology of acute pelvic inflammatory disease and treatment regimens. Rev Infect Dis. 1985; 7(Suppl 4):S696-702. http://www.ncbi.nlm.nih.gov/pubmed/3909326?dopt=AbstractPlus

211. Henry SA. Overall clinical experience with aztreonam in the treatment of obstetric-gynecologic infections. Rev Infect Dis. 1985; 7(Suppl 4):S703-8.

212. Winslade NE, Smith IL, Simons GW et al. Pharmacokinetics and extravascular penetration of aztreonam in patients with abdominal sepsis. Rev Infect Dis. 1985; 7(Suppl 4):S716-23. http://www.ncbi.nlm.nih.gov/pubmed/3909329?dopt=AbstractPlus

213. Birolini D, Moraes MF, Soares de Souza O. Aztreonam plus clindamycin vs. tobramycin plus clindamycin for the treatment of intraabdominal infections. Rev Infect Dis. 1985; 7(Suppl 4):S724-8.

214. Henry SA. Overall clinical experience with aztreonam in the treatment of intraabdominal infections. Rev Infect Dis. 1985; 7(Suppl 4):S729-33.

215. Schimpff SC. Overview of empiric antibiotic therapy for the febrile neutropenic patient. Rev Infect Dis. 1985; 7(Suppl 4):S734-40. http://www.ncbi.nlm.nih.gov/pubmed/3878564?dopt=AbstractPlus

216. Jones P, Rolston K. Fainstein V et al. Aztreonam plus vancomycin (plus amikacin) vs. moxalactam plus ticarcillin for the empiric treatment of febrile episodes in neutropenic cancer patients. Rev Infect Dis. 1985; 7(Suppl 4):S741-6.

217. Louie TJ, Chubb H, Bow EJ et al. Preservation of colonization resistance parameters during empiric therapy with aztreonam in the febrile neutropenic patient. Rev Infect Dis. 1985; 7(Suppl 4):S747-61. http://www.ncbi.nlm.nih.gov/pubmed/3909333?dopt=AbstractPlus

218. Cox CE. Aztreonam therapy for complicated urinary tract infections caused by multidrug-resistant bacteria. Rev Infect Dis. 1985; 7(Suppl 4):S767-71. http://www.ncbi.nlm.nih.gov/pubmed/3909335?dopt=AbstractPlus

219. Swabb EA, Jenkins SA, Muir JG. Summary of worldwide clinical trials of aztreonam in patients with urinary tract infections. Rev Infect Dis. 1985; 7(Suppl 4):S772-7.

220. Simons WJ, Lee TJ, Aztreonam in the treatment of bone and joint infections caused by gram-negative bacilli. Rev Infect Dis. 1985; 7(Suppl 4):S783-8. (IDIS 209607)

221. Scully BE, Henry SA. Clinical experience with aztreonam in the treatment of gram-negative bacteremia. Rev Infect Dis. 1985; 7(Suppl 4):S789-93.

222. Cone LA, Woodard DR. Aztreonam therapy for serious gram-negative bacillary infections. Rev Infect Dis. 1985; 7(Suppl 4):S794-802. http://www.ncbi.nlm.nih.gov/pubmed/3909339?dopt=AbstractPlus

223. McKellar PP. Clinical evaluation of aztreonam therapy for serious infections due to gram-negative bacteria. Rev Infect Dis. 1985; 7(Suppl 4):S803-9. http://www.ncbi.nlm.nih.gov/pubmed/3909340?dopt=AbstractPlus

224. Soriano F, Ponte MC. Comparative activities of aztreonam and cefotaxime against Escherichia coli and Bacteroides spp. in pure and mixed cultures. Antimicrob Agents Chemother. 1984; 26:39-41. http://www.ncbi.nlm.nih.gov/pubmed/6089653?dopt=AbstractPlus

226. Bechard DL, Hawkins SS, Dhruv R et al. Penetration of aztreonam into human bronchial secretions. Antimicrob Agents Chemother. 1985; 27:263-4. http://www.ncbi.nlm.nih.gov/pubmed/4039120?dopt=AbstractPlus

227. Bolton ND, Gerig JS, Scheld WM et al. Peritoneal transfer of aztreonam in patients during continuous ambulatory peritoneal dialysis. Kidney Int. 1984; 25:255.

228. Berne TV, Yellin AE, Appleman MD et al. Surgically treated gangrenous or perforated appendicitis. Ann Surg. 1987; 205:133-7. http://www.ncbi.nlm.nih.gov/pubmed/3545106?dopt=AbstractPlus

229. Buscher KH, Cullmann W, Dick W et al. Selection frequency of resistant variants by various β-lactam antibiotics in clinical Enterobacter cloacae isolates. Chemotherapy. 1987; 33:40-51. http://www.ncbi.nlm.nih.gov/pubmed/3493886?dopt=AbstractPlus

230. Agnelli G, Guerciolini R, Grasselli S et al. Effects of the monobactam antibiotic aztreonam on platelet function and blood coagulation. Chemotherapy. 1987; 33:9-14. http://www.ncbi.nlm.nih.gov/pubmed/2951237?dopt=AbstractPlus

231. Joubert PH, Teichler C. Evaluation of aztreonam in serious gram-negative infections. Curr Ther Res Clin Exp. 1987; 41:1-5.

232. Laethem YV, Cran S, Van de Perre P et al. Aztreonam therapy of gram-negative septicemia. Curr Ther Res Clin Exp. 1987; 41:244-53.

233. Bush K, Freudenberger JS, Sykes RB. Interaction of azthreonam and related monobactams with β-lactamases from gram-negative bacteria. Antimicrob Agents Chemother. 1982; 22:414-20. http://www.ncbi.nlm.nih.gov/pubmed/6982680?dopt=AbstractPlus

234. Jacobus NV, Ferreira MC, Barza M. In vitro activity of azthreonam, a monobactam antibiotic. Antimicrob Agents Chemother. 1982; 22:832-8. http://www.ncbi.nlm.nih.gov/pubmed/6891198?dopt=AbstractPlus

235. Rodriguez JR, Ramirez-Ronda CH, Nevarez M. Efficacy and safety of aztreonam-clindamycin versus tobramycin-clindamycin in the treatment of lower respiratory tract infections caused by aerobic gram-negative bacilli. Antimicrob Agents Chemother. 1985; 27:246-51. http://www.ncbi.nlm.nih.gov/pubmed/4039118?dopt=AbstractPlus

236. Gottlieb A, Mills J. Effectiveness of aztreonam for the treatment of gonorrhea. Antimicrob Agents Chemother. 1985; 27:270-1. http://www.ncbi.nlm.nih.gov/pubmed/3157346?dopt=AbstractPlus

237. Werner V, Sanders CC, Sanders WE et al. Role of β-lactamases and outer membrane proteins in multiple β-lactam resistance of Enterobacter cloacae, Antimicrob Agents Chemother. 1985; 27:455-9. (IDIS 198566)

238. Bush K, Tanaka SK, Bonner DP et al. Resistance caused by decreased penetration of β-lactam antibiotics into Enterobacter cloacae . Antimicrob Agents Chemother. 1985; 27:555-60. http://www.ncbi.nlm.nih.gov/pubmed/3873900?dopt=AbstractPlus

239. Hornstein MJ, Jupeau AM, Scavizzi MR et al. In vitro susceptibilities of 126 clinical isolates of Yersinia enterocolitica to 21 β-lactam antibiotics. Antimicrob Agents Chemother. 1985; 27:806-11. http://www.ncbi.nlm.nih.gov/pubmed/2990327?dopt=AbstractPlus

240. LeBel M, Paone RP, Lewis GP. Effect of ten new β-lactam antibiotics on urine glucose test methods. Drug Intell Clin Pharm. 1984; 18:617-20. http://www.ncbi.nlm.nih.gov/pubmed/6745089?dopt=AbstractPlus

241. Duma RJ. Aztreonam, the first monobactam. Ann Intern Med. 1987; 106:766-7. http://www.ncbi.nlm.nih.gov/pubmed/3565975?dopt=AbstractPlus

242. Cimarusti CM. Dependence of β-lactamase stability on substructures within β-lactam antibiotics. J Med Chem. 1984; 27:247-53. http://www.ncbi.nlm.nih.gov/pubmed/6607998?dopt=AbstractPlus

243. Saxon A, Swabb EA, Adkinson NF. Investigation into the immunologic cross-reactivity of aztreonam with other beta-lactam antibiotics. Am J Med. 1985; 78(Suppl 2A):19-26. http://www.ncbi.nlm.nih.gov/pubmed/2578733?dopt=AbstractPlus

244. Stella VJ. Chemical and physical bases determining the instability and incompatibility of formulated injectable drugs. J Parenter Sci Tech. 1986; 40:142-63.

245. Pipkin JD. Aztreonam. In: Connors KA, Amidon GL, Stella VJ, eds. Chemical stability of pharmaceuticals: a handbook for pharmacists. 2nd ed. New York: John Wiley; 1986:250-6.

246. Neu HC. β-lactam antibiotics: structural relationships affecting in vitro activity and pharmacologic properties. Rev Infect Dis. 1986; 8(Suppl 3):237-60.

247. Tomasz A. Penicillin-binding proteins and the antibacterial effectiveness of β-lactam antibiotics. Rev Infect Dis. 8(Suppl 3):260-78. (IDIS 220200)

248. Adkinson NF, Saxon A, Spence MR et al. Cross-allergenicity and immunogenicity of aztreonam. Rev Infect Dis. 1985; 7(Suppl 4):S613-21. http://www.ncbi.nlm.nih.gov/pubmed/4081473?dopt=AbstractPlus

253. Fresenius Kabi USA. Aztreonam for injection USP prescribing information. Lake Zunich, IL; 2014 Dec.

256. Cuzzolin L, Fanos V, Zambreri D et al. Pharmacokinetics and renal tolerance of aztreonam in premature infants. Antimicrob Agents Chemother. 1991; 35:1726-8. http://www.ncbi.nlm.nih.gov/pubmed/1952838?dopt=AbstractPlus

257. Centers for Disease Control and Prevention. CDC Sexually Transmitted Infections (STI) Treatment Guidelines, 2021. From CDC website https://www.cdc.gov/std/treatment-guidelines/default.htm

258. Evans L, Rhodes A, Alhazzani W et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock 2021. Critical Care Medicine 49(11):p e1063-e1143, November 2021.

260. Samonis G, Ho DH, Gooch GF et al. In vitro susceptibility of Citrobacter species to various antimicrobial agents. Antimicrob Agents Chemother. 1987; 31:829-30. http://www.ncbi.nlm.nih.gov/pubmed/3606084?dopt=AbstractPlus

261. Ettlin R, Hoignè R, Bruppacher R et al. Atopy and adverse drug reactions. Int Arch Allergy Appl Immunol. 1981; 66(Suppl 1):93-5.

262. Patterson R. Allergic reactions to drugs and biological agents. JAMA. 1982; 248:2637-45. http://www.ncbi.nlm.nih.gov/pubmed/7143626?dopt=AbstractPlus

263. Hoignè R, Hopf B, Sonntag R. Penicillins, cephalosporins and tetracyclines. In: Dukes MNG, ed. Meyler’s side effects of drugs. 9th ed. New York: Elsevier/North Holland Inc; 1980:411-22.

265. Hara K, Kobayashi H, Nishiura T et al. Clinical studies of aztreonam in Japan. Rev Infect Dis. 1985; 7(Suppl 4):S810-24. http://www.ncbi.nlm.nih.gov/pubmed/3909341?dopt=AbstractPlus

266. Stille W, Gillissen J. Clinical experience with aztreonam in Germany and Austria. Rev Infect Dis. 1985; 7(Suppl 4):S825-30. http://www.ncbi.nlm.nih.gov/pubmed/3909342?dopt=AbstractPlus

267. Daikos GK. Clinical experience with aztreonam in four Mediterranean countries. Rev Infect Dis. 1985; 7(Suppl 4):S831-9. http://www.ncbi.nlm.nih.gov/pubmed/2934787?dopt=AbstractPlus

268. Neu HC. Current state of infectious diseases—potential areas of directed therapy with aztreonam. Am J Med. 1985; 78(Suppl 2A):77-80. http://www.ncbi.nlm.nih.gov/pubmed/4038580?dopt=AbstractPlus

269. Reed MD, Blumer JL, Friedhoff LT et al. Single dose pharmacokinetics of aztreonam (A) in cystic fibrosis (CF). Clin Pharmacol Ther. 1985; 37:223.

270. Reed MD, Aronoff SC, Stern RC et al. Single-dose pharmacokinetics of aztreonam in children with cystic fibrosis. Pediatr Pulmonol. 1986; 2:282-6. http://www.ncbi.nlm.nih.gov/pubmed/3774385?dopt=AbstractPlus

271. United States Pharmacopeial Convention. Aztreonam for injection, sterile aztreonam. Pharmacop Forum. 1987; 13:2773-7.

272. Strandberg DA, Jorgensen JH, Drutz DJ. Activities of newer β-lactam antibiotics against ampicillin, chloramphenicol, or multiply-resistant Haemophilus influenzae . Diagn Microbiol Infect Dis. 1984; 2:233-7. http://www.ncbi.nlm.nih.gov/pubmed/6235088?dopt=AbstractPlus

273. Campos JM, Gill CJ, Ahonkhai VI. In-vitro activity of imipenem against 100 strains of serotype b and nontypable Haemophilus influenzae, including strains resistant to ampicillin, chloramphenicol or both. J Antimicrob Chemother. 1985; 16:549-54. http://www.ncbi.nlm.nih.gov/pubmed/3878361?dopt=AbstractPlus

274. Saxon A, Beall GN, Rohr AS et al. Immediate hypersensitivity reactions to beta-lactam antibiotics. Ann Intern Med. 1987; 107:204-15. http://www.ncbi.nlm.nih.gov/pubmed/3300459?dopt=AbstractPlus

275. Jensen T, Koch C, Pederson SS et al. Aztreonam for cystic fibrosis patients who are hypersensitive to other beta-lactams. Lancet. 1987; 1:1319-20.

276. Reviewers’ comments (personal observations). 1987 Sep.

277. Christian S (E.R. Squibb and Sons Inc, Princeton, NJ): Personal communication; 1987 Sep 21.

278. Hammerschlag MR, Gleyzer A. In vitro activity of a group of broad-spectrum cephalosporins and other β-lactam antibiotics against Chlamydia trachomatis . Antimicrob Agents Chemother. 1983; 23:493-4. http://www.ncbi.nlm.nih.gov/pubmed/6847175?dopt=AbstractPlus

279. Moosdeen F, Keeble J, Williams JD. Inductionβinhibition of chromosomal β-lactamases by β-lactamase inhibitors. Rev Infect Dis. 1986; 8(Suppl 5):S562-8.

280. Bosso JA, Black PG, Matsen JM. Efficacy of aztreonam in pulmonary exacerbations of cystic fibrosis. Pediatr Infect Res J. 1987; 6:293-7.

281. Dratwa M, Glupczynski Y, Lameire N et al. Aztreonam in CAPD peritonitis. Lancet. 1987; 2:213-4. http://www.ncbi.nlm.nih.gov/pubmed/2885662?dopt=AbstractPlus

282. Smith DW, Wilson RD. Treatment of Pseudomonas aeruginosa osteomyelitis with aztreonam. Med J Aust. 1987; 147:152. http://www.ncbi.nlm.nih.gov/pubmed/3600480?dopt=AbstractPlus

283. Sykes RB, Bonner DP. Session II: discovery and development of the monobactams. Rev Infect Dis. 1985; 7(Suppl 4):S579-93. http://www.ncbi.nlm.nih.gov/pubmed/3909315?dopt=AbstractPlus

285. Pazmino P. Acute renal failure, skin rash, and eosinophilia associated with aztreonam. Am J Nephrol. 1988; 8:68-70. http://www.ncbi.nlm.nih.gov/pubmed/2967033?dopt=AbstractPlus

286. Food and Drug Administration. Antibiotic drugs; aztreonam injection: final rule (21 CFR Part 455). Fed Regist. 1989; 54:40384-6.

289. Kishiyama JL, Adelman DC. The cross-reactivity and immunologic of β-lactam antibiotics. Drug Saf. 1994; 10:318-27. http://www.ncbi.nlm.nih.gov/pubmed/8018304?dopt=AbstractPlus

290. Alvarez JS, Del Castillo JAS, Garcia IS et al. Immediate hypersensitivity to aztreonam. Lancet. 1990; 1:1094.

292. American Academy of Pediatrics. Red Book: 2021 Report of the Committee on Infectious Diseases. 32nd ed. Elk Grove Village, IL: American Academy of Pediatrics; 2021.

293. Anon. Drugs for bacterial infections. Med Lett Treat Guid. 2010; 8:43-52.

295. Cadarso AI, Jimenez SAS, Pan CV et al. Aztreonam-induced anaphylaxis. Lancet. 1990; 1:746-7.

296. Hantson P, de Coninck B, Horn JL et al. Immediate hypersensitivity to aztreonam and imipenem. BMJ. 1991; 302:294-5. http://www.ncbi.nlm.nih.gov/pubmed/1998810?dopt=AbstractPlus

302. Gerding DN, Johnson S, Peterson LR et al for the Society for Healthcare Epidemiology of American. Position paper on Clostridium difficile-associated diarrhea and colitis. Infect Control Hosp Epidemiol. 1995; 16:459-77. http://www.ncbi.nlm.nih.gov/pubmed/7594392?dopt=AbstractPlus

303. Kelly CR, Fischer M, Allegretti JR et al. ACG Clinical Guidelines: Prevention, diagnosis, and treatment of Clostridioides difficile infections. Am J Gastroenterol. 2021; 116: 1124-1147.

306. Gilead Sciences. Cayston (aztreonam) for inhalation solution prescribing information. Foster City, CA; 2019 Nov.

307. Retsch-Bogart GZ, Quittner AL, Gibson RL et al. Efficacy and safety of inhaled aztreonam lysine for airway pseudomonas in cystic fibrosis. Chest. 2009; 135:1223-32. http://www.ncbi.nlm.nih.gov/pubmed/19420195?dopt=AbstractPlus

308. McCoy KS, Quittner AL, Oermann CM et al. Inhaled aztreonam lysine for chronic airway Pseudomonas aeruginosa in cystic fibrosis. Am J Respir Crit Care Med. 2008; 178:921-8. http://www.ncbi.nlm.nih.gov/pubmed/18658109?dopt=AbstractPlus

309. Oermann CM, Retsch-Bogart GZ, Quittner AL et al. An 18-month study of the safety and efficacy of repeated courses of inhaled aztreonam lysine in cystic fibrosis. Pediatr Pulmonol. 2010; 45:1121-34. http://www.ncbi.nlm.nih.gov/pubmed/20672296?dopt=AbstractPlus

310. Assael BM, Pressler T, Bilton D et al. Inhaled aztreonam lysine vs. inhaled tobramycin in cystic fibrosis: a comparative efficacy trial. J Cyst Fibros. 2013; 12:130-40. http://www.ncbi.nlm.nih.gov/pubmed/22985692?dopt=AbstractPlus

311. Tullis DE, Burns JL, Retsch-Bogart GZ et al. Inhaled aztreonam for chronic Burkholderia infection in cystic fibrosis: a placebo-controlled trial. J Cyst Fibros. 2014; 13:296-305. http://www.ncbi.nlm.nih.gov/pubmed/24176390?dopt=AbstractPlus

312. Li PK, Chow KM, Cho Y et al. ISPD peritonitis guideline recommendations: 2022 update on prevention and treatment. Perit Dial Int. 2022 Mar;42(2):110-153. doi: 10.1177/08968608221080586. Erratum in: Perit Dial Int. 2023 Mar 29;:8968608231166870. PMID: 3526402

313. Fuiano G, Sepe V, Viscione M et al. Effectiveness of single daily intraperitoneal administration of aztreonam and cefuroxime in the treatment of peritonitis in continuous ambulatory peritoneal dialysis (CAPD). Perit Dial Int. 1989; 9:273-5. http://www.ncbi.nlm.nih.gov/pubmed/2488380?dopt=AbstractPlus

314. Dratwa M, Glupczynski Y, Lameire N et al. Treatment of gram-negative peritonitis with aztreonam in patients undergoing continuous ambulatory peritoneal dialysis. Rev Infect Dis. 1991 May-Jun; 13 Suppl 7:S645-7.

315. Cheng IK, Chan CY, Wong WT. A randomised prospective comparison of oral ofloxacin and intraperitoneal vancomycin plus aztreonam in the treatment of bacterial peritonitis complicating continuous ambulatory peritoneal dialysis (CAPD). Perit Dial Int. 1991; 11:27-30. http://www.ncbi.nlm.nih.gov/pubmed/2049419?dopt=AbstractPlus

316. Romano A, Gaeta F, Valluzzi RL et al. Cross-reactivity and tolerability of aztreonam and cephalosporins in subjects with a T cell-mediated hypersensitivity to penicillins. J Allergy Clin Immunol. 2016; :.

317. Gaeta F, Valluzzi RL, Alonzi C et al. Tolerability of aztreonam and carbapenems in patients with IgE-mediated hypersensitivity to penicillins. J Allergy Clin Immunol. 2015; 135:972-6. http://www.ncbi.nlm.nih.gov/pubmed/25457154?dopt=AbstractPlus

318. Tiddens HA, De Boeck K, Clancy JP et al. Open label study of inhaled aztreonam for Pseudomonas eradication in children with cystic fibrosis: The ALPINE study. J Cyst Fibros. 2015; 14:111-9. http://www.ncbi.nlm.nih.gov/pubmed/25091537?dopt=AbstractPlus

319. Dickinson KM, Collaco JM. Cystic Fibrosis. Pediatr Rev. 2021 Feb;42(2):55-67. doi: 10.1542/pir.2019-0212. PMID: 33526571; PMCID: PMC8972143.

320. Romano A, Gaeta F, Valluzzi RL et al. IgE-mediated hypersensitivity to cephalosporins: cross-reactivity and tolerability of penicillins, monobactams, and carbapenems. J Allergy Clin Immunol. 2010; 126:994-9. http://www.ncbi.nlm.nih.gov/pubmed/20888035?dopt=AbstractPlus

321. Mackeen AD, Packard RE, Ota E, Speer L. Antibiotic regimens for postpartum endometritis. Cochrane Database Syst Rev. 2015 Feb 2;2015(2):CD001067. doi: 10.1002/14651858.CD001067.pub3. PMID: 25922861; PMCID: PMC7050613

344. Workowski KA, Bachmann LH, Chan PA et al. Sexually Transmitted Diseases Treatment Guidelines, 2021. MMWR Recomm Rep. 2021; 70(4):1-187.

360. . Antimicrobial prophylaxis for surgery. Treat Guidel Med Lett. 2012; 10:73-8; quiz 79-80. http://www.ncbi.nlm.nih.gov/pubmed/22996382?dopt=AbstractPlus

374. Bratzler DW, Dellinger EP, Olsen KM et al. Clinical practice guidelines for antimicrobial prophylaxis in surgery. Am J Health Syst Pharm. 2013; 70:195-283. http://www.ncbi.nlm.nih.gov/pubmed/23327981?dopt=AbstractPlus

457. Freifeld AG, Bow EJ, Sepkowitz KA et al. Clinical Practice Guideline for the Use of Antimicrobial Agents in Neutropenic Patients with Cancer: 2010 Update by the Infectious Disease Society of America. Clin Infect Dis. 2011; 52:e56-93

512. Metlay JP, Waterer GW, Long AC et al. Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med. 2019; 200:e45-e67. Updates may be available at IDSA website at www.idsociety.org.

513. Bradley JS, Byington CL, Shah SS et al. The management of community-acquired pneumonia in infants and children older than 3 months of age: clinical practice guidelines by the Pediatric Infectious Diseases Society and the Infectious Diseases Society of America. Clin Infect Dis. 2011; 53:e25-76. .

543. Stevens DL, Bisno AL, Chambers HF et al. Practice guidelines for the diagnosis and management of skin and soft tissue infections: 2014 update by the infectious diseases society of America. Clin Infect Dis. 2014; 59:147-59. Updates may be available at IDSA website at www.idsociety.org. http://www.ncbi.nlm.nih.gov/pubmed/24947530?dopt=AbstractPlus

544. Lipsky BA, Berendt AR, Cornia PB et al. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis. 2012; 54:e132-73. .

590. Berbari EF, Kanj SS, Kowalski TJ et al. 2015 Infectious Diseases Society of America (IDSA) Clinical Practice Guidelines for the Diagnosis and Treatment of Native Vertebral Osteomyelitis in Adults. Clin Infect Dis. 2015; 61:e26-46. .

709. Mazuski JE, Tessier JM, May AK et al. The Surgical Infection Society Revised Guidelines on the Management of Intra-Abdominal Infection. Surg Infect (Larchmt). 2017 Jan;18(1):1-76. doi: 10.1089/sur.2016.261. PMID: 28085573.

750. Kalil AC, Metersky ML, Klompas M et al. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis. 2016; 63:e61-e111. Updates may be available at IDSA website at www.idsociety.org.

751. Danjean M, Morel F, Robert J. Efficacy of aztreonam with ß-lactamase inhibitors against metallo-carbapenemase-producing Enterobacteria. Infect Dis Now. 2021;51(7):639-640.

752. Falcone M, Daikos GL, Tiseo G et al. Efficacy of ceftazidime-avibactam plus aztreonam in patients with bloodstream infections caused by metallo-β-lactamase-producing Enterobacterales. Clin Infect Dis. 2021;72(11):1871-1878.

753. Maraki S, Mavromanolaki VE, Moraitis P et al. Ceftazidime-avibactam, meropenen-vaborbactam, and imipenem-relebactam in combination with aztreonam against multidrug-resistant, metallo-β-lactamase-producing Klebsiella pneumoniae. Eur J Clin Microbiol Infect Dis. 2021;40(8):1755-1759.

754. Shaw E, Rombauts A, Tubau F et al. Clinical outcomes after combination treatment with ceftazidime/avibactam and aztreonam for NDM-1/OXA-48/CTX-M-15-producing Klebsiella pneumoniae infection. J Antimicrob Chemother. 2018;73(4):1104-1106.

755. Lee M, Abbey T, Biagi M et al. Activity of aztreonam in combination with ceftazidime-avibactam against serine- and metallo-β-lactamase-producing Pseudomonas aeruginosa. Diagn Microbiol Infect Dis. 2021;99(1):115227.

756. Adams KK, McManus D, Topal J et al. Re-evaluating aztreonam and ceftazidime hypersensitivity: fraternal not identical twins. J Antimicrob Chemother. 2021;76(10):2741-2743.

757. O'Donnell JN, Xu A, Lodise TP. Intravenous compatibility of ceftazidime-avibactam and aztreonam using simulated and actual Y-site administration. Clin Ther. 2020;42(8):1580-1586.e2.

758. Gross AE, Xu H, Zhou D et al. Simplified aztreonam dosing in patients with end-stage renal disease: results of a Monte Carlo simulation. Antimicrob Agents Chemother. 2018;62(11):e01066-18.

759. Gilead. Cayston Access Program. From Cayston website. Accessed 2021 Oct 20.

760. Tunkel AR, Hasbun R, Bhimraj A, et al. 2017 Infectious Diseases Society of America's clinical practice guidelines for healthcare-associated ventriculitis and meningitis. Clin Infect Dis. 2017;64(6):e34-e65.

761. Jordan EF, Nye MB, Luque AE. Successful treatment of Pasteurella multocida meningitis with aztreonam. Scand J Infect Dis. 2007;39(1):72-74.

762. Lentnek AL, Williams RR. Aztreonam in the treatment of gram-negative bacterial meningitis. Rev Infect Dis. 1991;13 Suppl 7:S586-S590.

763. Kilpatrick M, Girgis N, Farid Z, Bishay E. Aztreonam for treating meningitis caused by gram-negative rods. Scand J Infect Dis. 1991;23(1):125-126.

764. Ayroza-Galvão PA, Milstein-Kuschnaroff TM, Mimica IM, et al. Aztreonam in the treatment of bacterial meningitis. Chemotherapy. 1989;35 Suppl 1:39-44.

765. Feris J, Moledina N, Rodriguez WJ, et al. Aztreonam in the treatment of gram-negative meningitis and other gram-negative infections. Chemotherapy. 1989;35 Suppl 1:31-38

766. Constantopoulos A, Thomaidou L, Loupa H, Papoulias G. Successful response of severe neonatal gram-negative infection to treatment with aztreonam. Chemotherapy. 1989;35 Suppl 1:101-105.

767. Girgis NI, Abu el Ella AH, Farid Z, et al. Parenteral aztreonam in the treatment of Haemophilus influenzae type b meningitis in Egyptian children. Scand J Infect Dis. 1988;20(1):111-112.