Skip to main content

Benzhydrocodone and Acetaminophen

Medically reviewed by Drugs.com. Last updated on Feb 12, 2024.

Pronunciation

(benz hye droe KOE done & a seet a MIN oh fen)

Index Terms

Dosage Forms

Excipient information presented when available (limited, particularly for generics); consult specific product labeling.

Tablet, Oral:

Apadaz: Acetaminophen 325 mg and benzhydrocodone hydrochloride 4.08 mg, Acetaminophen 325 mg and benzhydrocodone hydrochloride 6.12 mg, Acetaminophen 325 mg and benzhydrocodone hydrochloride 8.16 mg

Generic: Acetaminophen 325 mg and benzhydrocodone hydrochloride 4.08 mg, Acetaminophen 325 mg and benzhydrocodone hydrochloride 6.12 mg, Acetaminophen 325 mg and benzhydrocodone hydrochloride 8.16 mg

Brand Names: U.S.

Pharmacologic Category

Pharmacology

Benzhydrocodone: Prodrug of hydrocodone; binds to opiate receptors in the CNS, altering the perception of and response to pain; suppresses cough in medullary center; produces generalized CNS depression.

Acetaminophen: Although not fully elucidated, the analgesic effects are believed to be due to activation of descending serotonergic inhibitory pathways in the central nervous system. Interactions with other nociceptive systems may be involved as well (Smith 2009). Antipyresis is produced from inhibition of the hypothalamic heat-regulating center.

Use: Labeled Indications

Pain management: Short-term (≤14 days) management of acute pain severe enough to require an opioid analgesic and for which alternative treatments are inadequate.

Limitations of use: Reserve for use in patients for whom alternative treatment options (eg, nonopioid analgesics) are ineffective, not tolerated, or would be otherwise inadequate to provide sufficient management of pain.

Contraindications

Hypersensitivity (eg, anaphylaxis) to hydrocodone, acetaminophen, or any component of the formulation; significant respiratory depression; acute or severe bronchial asthma in an unmonitored setting or in the absence of resuscitative equipment; GI obstruction, including paralytic ileus (known or suspected)

Documentation of allergenic cross-reactivity for opioids is limited. However, because of similarities in chemical structure and/or pharmacologic actions, the possibility of cross-sensitivity cannot be ruled out with certainty.

Dosing: Adult

Pain management: Oral: Initial: 1 to 2 tablets every 4 to 6 hours as needed for pain; titrate to provide adequate analgesia while minimizing adverse effects; maximum: 12 tablets per 24 hours. Do not exceed acetaminophen 4 g/day. Note: Use the lowest effective dosage for the shortest duration. Do not use >14 days.

Conversion from hydrocodone bitartrate (immediate release) to benzhydrocodone:

Hydrocodone bitartrate 5 mg is equivalent to benzhydrocodone 4.08 mg.

Hydrocodone bitartrate 7.5 mg is equivalent to benzhydrocodone 6.12 mg.

Hydrocodone bitartrate 10 mg is equivalent to benzhydrocodone 8.16 mg.

Conversion from other opioids to benzhydrocodone: Substantial interpatient variability exists in relative potency. Therefore, it is safer to underestimate a patient's daily oral benzhydrocodone requirement.

Discontinuation of therapy: When discontinuing chronic opioid therapy, the dose should be gradually tapered down. An optimal universal tapering schedule for all patients has not been established (CDC [Dowell 2016]). Proposed schedules range from slow (eg, 10% reductions per week) to rapid (eg, 25% to 50% reduction every few days) (CDC 2015). Tapering schedules should be individualized to minimize opioid withdrawal while considering patient-specific goals and concerns as well as the pharmacokinetics of the opioid being tapered. An even slower taper may be appropriate in patients who have been receiving opioids for a long duration (eg, years), particularly in the final stage of tapering, whereas more rapid tapers may be appropriate in patients experiencing severe adverse events (CDC [Dowell 2016]). Monitor carefully for signs/symptoms of withdrawal. If the patient displays withdrawal symptoms, consider slowing the taper schedule; alterations may include increasing the interval between dose reductions, decreasing amount of daily dose reduction, pausing the taper and restarting when the patient is ready, and/or coadministration of an alpha-2 agonist (eg, clonidine) to blunt withdrawal symptoms (Berna 2015; CDC [Dowell 2016]). Continue to offer nonopioid analgesics as needed for pain management during the taper; consider nonopioid adjunctive treatments for withdrawal symptoms (eg, GI complaints, muscle spasm) as needed (Berna 2015; Sevarino 2018).

Dosage adjustment for concomitant therapy: Significant drug interactions exist, requiring dose/frequency adjustment or avoidance. Consult drug interactions database for more information.

Dosing: Geriatric

Refer to adult dosing. Initiate dosing at the lower end of the dosage range; titrate slowly. Monitor closely.

Administration

Oral: Administer without regard to food.

Storage

Store at 20°C to 25°C (68°F to 77°F); excursions permitted between 15°C to 30°C (59°F to 86°F).

Drug Interactions

Abametapir: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Avoid combination

Alizapride: May enhance the CNS depressant effect of CNS Depressants. Monitor therapy

Alvimopan: Opioid Agonists may enhance the adverse/toxic effect of Alvimopan. This is most notable for patients receiving long-term (i.e., more than 7 days) opiates prior to alvimopan initiation. Management: Alvimopan is contraindicated in patients receiving therapeutic doses of opioids for more than 7 consecutive days immediately prior to alvimopan initiation. Consider therapy modification

Amphetamines: May enhance the analgesic effect of Opioid Agonists. Monitor therapy

Anticholinergic Agents: May enhance the adverse/toxic effect of Opioid Agonists. Specifically, the risk for constipation and urinary retention may be increased with this combination. Monitor therapy

Aprepitant: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Monitor therapy

Azelastine (Nasal): May enhance the CNS depressant effect of CNS Depressants. Avoid combination

Blonanserin: CNS Depressants may enhance the CNS depressant effect of Blonanserin. Management: Use caution if coadministering blonanserin and CNS depressants; dose reduction of the other CNS depressant may be required. Strong CNS depressants should not be coadministered with blonanserin. Consider therapy modification

Brimonidine (Topical): May enhance the CNS depressant effect of CNS Depressants. Monitor therapy

Bromopride: May enhance the CNS depressant effect of CNS Depressants. Monitor therapy

Bromperidol: May enhance the CNS depressant effect of CNS Depressants. Avoid combination

Busulfan: Acetaminophen may increase the serum concentration of Busulfan. Monitor therapy

Cannabidiol: May enhance the CNS depressant effect of CNS Depressants. Monitor therapy

Cannabis: May enhance the CNS depressant effect of CNS Depressants. Monitor therapy

CarBAMazepine: May increase the metabolism of Acetaminophen. This may 1) diminish the effect of acetaminophen; and 2) increase the risk of liver damage. Monitor therapy

Chlormethiazole: May enhance the CNS depressant effect of CNS Depressants. Management: Monitor closely for evidence of excessive CNS depression. The chlormethiazole labeling states that an appropriately reduced dose should be used if such a combination must be used. Consider therapy modification

Chlorphenesin Carbamate: May enhance the adverse/toxic effect of CNS Depressants. Monitor therapy

Clofazimine: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Monitor therapy

CNS Depressants: May enhance the CNS depressant effect of Opioid Agonists. Management: Avoid concomitant use of opioid agonists and benzodiazepines or other CNS depressants when possible. These agents should only be combined if alternative treatment options are inadequate. If combined, limit the dosages and duration of each drug. Consider therapy modification

Conivaptan: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Avoid combination

CYP2D6 Inhibitors (Strong): May decrease serum concentrations of the active metabolite(s) of Benzhydrocodone. Monitor therapy

CYP3A4 Inducers (Moderate): May decrease the serum concentration of Benzhydrocodone. Specifically, the serum concentrations of hydrocodone may be reduced. Monitor therapy

CYP3A4 Inducers (Strong): May decrease the serum concentration of Benzhydrocodone. Specifically, the serum concentrations of hydrocodone may be reduced. Monitor therapy

CYP3A4 Inhibitors (Moderate): May increase the serum concentration of Benzhydrocodone. Specifically, the concentration of hydrocodone may be increased. Monitor therapy

CYP3A4 Inhibitors (Strong): May increase the serum concentration of Benzhydrocodone. Specifically, the concentration of hydrocodone may be increased. Monitor therapy

Dabrafenib: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Management: Seek alternatives to concomitant therapy when possible. If concomitant therapy cannot be avoided, monitor for reduced clinical effects of the CYP3A4 substrate. Consider therapy modification

Dapsone (Topical): May enhance the adverse/toxic effect of Methemoglobinemia Associated Agents. Monitor therapy

Dasatinib: Acetaminophen may enhance the hepatotoxic effect of Dasatinib. Dasatinib may increase the serum concentration of Acetaminophen. Management: Avoid coadministration of acetaminophen and dasatinib if possible. If coadministration is unavoidable, monitor for signs/symptoms of hepatotoxicity, particularly in patients with greater acetaminophen exposure. Consider therapy modification

Deferasirox: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Monitor therapy

Desmopressin: Opioid Agonists may enhance the adverse/toxic effect of Desmopressin. Monitor therapy

Dimethindene (Topical): May enhance the CNS depressant effect of CNS Depressants. Monitor therapy

Diuretics: Opioid Agonists may enhance the adverse/toxic effect of Diuretics. Opioid Agonists may diminish the therapeutic effect of Diuretics. Monitor therapy

Dronabinol: May enhance the CNS depressant effect of CNS Depressants. Monitor therapy

Droperidol: May enhance the CNS depressant effect of CNS Depressants. Management: Consider dose reductions of droperidol or of other CNS agents (eg, opioids, barbiturates) with concomitant use. Consider therapy modification

Duvelisib: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Monitor therapy

Eluxadoline: Opioid Agonists may enhance the constipating effect of Eluxadoline. Avoid combination

Enzalutamide: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Management: Concurrent use of enzalutamide with CYP3A4 substrates that have a narrow therapeutic index should be avoided. Use of enzalutamide and any other CYP3A4 substrate should be performed with caution and close monitoring. Consider therapy modification

Erdafitinib: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Monitor therapy

Erdafitinib: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Monitor therapy

Flucloxacillin: May enhance the adverse/toxic effect of Acetaminophen. Specifically, the risk for high anion gap metabolic acidosis may be increased. Monitor therapy

Flunitrazepam: CNS Depressants may enhance the CNS depressant effect of Flunitrazepam. Management: Reduce the dose of CNS depressants when combined with flunitrazepam and monitor patients for evidence of CNS depression (eg, sedation, respiratory depression). Use non-CNS depressant alternatives when available. Consider therapy modification

Fosaprepitant: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Monitor therapy

Fosnetupitant: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Monitor therapy

Fosphenytoin-Phenytoin: May decrease the serum concentration of Acetaminophen. Specifically, serum concentrations of acetaminophen may be decreased (leading to decreased efficacy), but the formation of the toxic N-acetyl-p-benzoquinone imine (NAPQI) metabolite may be increased (leading to increased hepatotoxicity). Monitor therapy

Fusidic Acid (Systemic): May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Avoid combination

Gastrointestinal Agents (Prokinetic): Opioid Agonists may diminish the therapeutic effect of Gastrointestinal Agents (Prokinetic). Monitor therapy

Idelalisib: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Avoid combination

Imatinib: Acetaminophen may enhance the hepatotoxic effect of Imatinib. Monitor therapy

Isoniazid: May enhance the hepatotoxic effect of Acetaminophen. Isoniazid may increase the metabolism of Acetaminophen. Specifically, formation of the hepatotoxic NAPQI metabolite may be increased. Monitor therapy

Ivosidenib: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Monitor therapy

Kava Kava: May enhance the adverse/toxic effect of CNS Depressants. Monitor therapy

Larotrectinib: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Monitor therapy

Lemborexant: May enhance the CNS depressant effect of CNS Depressants. Management: Dosage adjustments of lemborexant and of concomitant CNS depressants may be necessary when administered together because of potentially additive CNS depressant effects. Close monitoring for CNS depressant effects is necessary. Consider therapy modification

Lisuride: May enhance the CNS depressant effect of CNS Depressants. Monitor therapy

Local Anesthetics: Methemoglobinemia Associated Agents may enhance the adverse/toxic effect of Local Anesthetics. Specifically, the risk for methemoglobinemia may be increased. Monitor therapy

Lofexidine: May enhance the CNS depressant effect of CNS Depressants. Monitor therapy

Lorlatinib: May decrease the serum concentration of Acetaminophen. Monitor therapy

Magnesium Sulfate: May enhance the CNS depressant effect of CNS Depressants. Monitor therapy

Methotrimeprazine: CNS Depressants may enhance the CNS depressant effect of Methotrimeprazine. Methotrimeprazine may enhance the CNS depressant effect of CNS Depressants. Management: Reduce the usual dose of CNS depressants by 50% if starting methotrimeprazine until the dose of methotrimeprazine is stable. Monitor patient closely for evidence of CNS depression. Consider therapy modification

Metoclopramide: May enhance the CNS depressant effect of CNS Depressants. Monitor therapy

MetyraPONE: May increase the serum concentration of Acetaminophen. More importantly, by inhibiting the conjugative metabolism of acetaminophen, metyrapone may shift the metabolism towards the oxidative route that produces a hepatotoxic metabolite. Monitor therapy

MetyroSINE: CNS Depressants may enhance the sedative effect of MetyroSINE. Monitor therapy

MiFEPRIStone: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Management: Minimize doses of CYP3A4 substrates, and monitor for increased concentrations/toxicity, during and 2 weeks following treatment with mifepristone. Avoid cyclosporine, dihydroergotamine, ergotamine, fentanyl, pimozide, quinidine, sirolimus, and tacrolimus. Consider therapy modification

Minocycline (Systemic): May enhance the CNS depressant effect of CNS Depressants. Monitor therapy

Mipomersen: Acetaminophen may enhance the hepatotoxic effect of Mipomersen. Monitor therapy

Mitotane: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Management: Doses of CYP3A4 substrates may need to be adjusted substantially when used in patients being treated with mitotane. Consider therapy modification

Monoamine Oxidase Inhibitors: Benzhydrocodone may enhance the serotonergic effect of Monoamine Oxidase Inhibitors. This could result in serotonin syndrome. Management: The use of benzhydrocodone is not recommended for patients taking monoamine oxidase inhibitors (MAOIs) or within 14 days of MAOI discontinuation. If coadministration is required, use test doses and frequent titration of small benzhydrocodone. Consider therapy modification

Nabilone: May enhance the CNS depressant effect of CNS Depressants. Monitor therapy

Nalmefene: May diminish the therapeutic effect of Opioid Agonists. Management: Avoid the concomitant use of nalmefene and opioid agonists. Discontinue nalmefene 1 week prior to any anticipated use of opioid agonistss. If combined, larger doses of opioid agonists will likely be required. Consider therapy modification

Naltrexone: May diminish the therapeutic effect of Opioid Agonists. Management: Seek therapeutic alternatives to opioids. See full drug interaction monograph for detailed recommendations. Avoid combination

Nefazodone: Opioid Agonists (metabolized by CYP3A4 and CYP2D6) may enhance the serotonergic effect of Nefazodone. This could result in serotonin syndrome. Nefazodone may increase the serum concentration of Opioid Agonists (metabolized by CYP3A4 and CYP2D6). Management: Monitor for increased opioid effects, including fatal respiratory depression, when these agents are combined and consider opioid dose reductions until stable drug effects are achieved. Additionally, monitor for serotonin syndrome/serotonin toxicity. Monitor therapy

Netupitant: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Monitor therapy

Nitric Oxide: May enhance the adverse/toxic effect of Methemoglobinemia Associated Agents. Combinations of these agents may increase the likelihood of significant methemoglobinemia. Monitor therapy

Opioid Agonists: CNS Depressants may enhance the CNS depressant effect of Opioid Agonists. Management: Avoid concomitant use of opioid agonists and benzodiazepines or other CNS depressants when possible. These agents should only be combined if alternative treatment options are inadequate. If combined, limit the dosages and duration of each drug. Consider therapy modification

Opioids (Mixed Agonist / Antagonist): May diminish the analgesic effect of Opioid Agonists. Management: Seek alternatives to mixed agonist/antagonist opioids in patients receiving pure opioid agonists, and monitor for symptoms of therapeutic failure/high dose requirements (or withdrawal in opioid-dependent patients) if patients receive these combinations. Avoid combination

Orphenadrine: CNS Depressants may enhance the CNS depressant effect of Orphenadrine. Avoid combination

Oxomemazine: May enhance the CNS depressant effect of CNS Depressants. Avoid combination

Oxybate Salt Products: CNS Depressants may enhance the CNS depressant effect of Oxybate Salt Products. Management: Consider alternatives to this combination when possible. If combined, dose reduction or discontinuation of one or more CNS depressants (including the oxybate salt product) should be considered. Interrupt oxybate salt treatment during short-term opioid use Consider therapy modification

OxyCODONE: CNS Depressants may enhance the CNS depressant effect of OxyCODONE. Management: Avoid concomitant use of oxycodone and benzodiazepines or other CNS depressants when possible. These agents should only be combined if alternative treatment options are inadequate. If combined, limit the dosages and duration of each drug. Consider therapy modification

Palbociclib: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Monitor therapy

Paraldehyde: CNS Depressants may enhance the CNS depressant effect of Paraldehyde. Avoid combination

Pegvisomant: Opioid Agonists may diminish the therapeutic effect of Pegvisomant. Monitor therapy

Perampanel: May enhance the CNS depressant effect of CNS Depressants. Management: Patients taking perampanel with any other drug that has CNS depressant activities should avoid complex and high-risk activities, particularly those such as driving that require alertness and coordination, until they have experience using the combination. Consider therapy modification

PHENobarbital: May enhance the CNS depressant effect of Benzhydrocodone. PHENobarbital may decrease serum concentrations of the active metabolite(s) of Benzhydrocodone. Specifically, phenobarbital may decrease serum concentrations of hydrocodone. Management: Avoid use of benzhydrocodone and phenobarbital when possible. Monitor for respiratory depression/sedation. Because phenobarbital is also a strong CYP3A4 inducer, monitor for decreased benzhydrocodone efficacy and withdrawal if combined. Consider therapy modification

Phenylephrine (Systemic): Acetaminophen may increase the serum concentration of Phenylephrine (Systemic). Monitor therapy

Piribedil: CNS Depressants may enhance the CNS depressant effect of Piribedil. Monitor therapy

Pramipexole: CNS Depressants may enhance the sedative effect of Pramipexole. Monitor therapy

Prilocaine: Methemoglobinemia Associated Agents may enhance the adverse/toxic effect of Prilocaine. Combinations of these agents may increase the likelihood of significant methemoglobinemia. Management: Monitor patients for signs of methemoglobinemia (e.g., hypoxia, cyanosis) when prilocaine is used in combination with other agents associated with development of methemoglobinemia. Avoid lidocaine/prilocaine in infants receiving such agents. Monitor therapy

Primidone: May enhance the CNS depressant effect of Benzhydrocodone. Primidone may decrease serum concentrations of the active metabolite(s) of Benzhydrocodone. Specifically, serum concentrations of hydrocodone may be decreased. Management: Avoid use of benzhydrocodone and primidonel when possible. Monitor for respiratory depression/sedation. Because primidone is also a strong CYP3A4 inducer, monitor for decreased benzhydrocodone efficacy and withdrawal if combined. Consider therapy modification

Probenecid: May increase the serum concentration of Acetaminophen. Probenecid may also limit the formation of at least one major non-toxic metabolite, possibly increasing the potential for formation of the toxic NAPQI metabolite. Management: Consider limiting acetaminophen use in combination with probenecid. Probenecid may reduce clearance of acetaminophen to one of its non-toxic metabolities, increasing the risk for acetaminophen toxicity, even a lower doses. Consider therapy modification

Ramosetron: Opioid Agonists may enhance the constipating effect of Ramosetron. Monitor therapy

ROPINIRole: CNS Depressants may enhance the sedative effect of ROPINIRole. Monitor therapy

Rotigotine: CNS Depressants may enhance the sedative effect of Rotigotine. Monitor therapy

Rufinamide: May enhance the adverse/toxic effect of CNS Depressants. Specifically, sleepiness and dizziness may be enhanced. Monitor therapy

Sarilumab: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Monitor therapy

Selective Serotonin Reuptake Inhibitors (Strong CYP2D6 Inhibitors): Opioid Agonists (metabolized by CYP3A4 and CYP2D6) may enhance the serotonergic effect of Selective Serotonin Reuptake Inhibitors (Strong CYP2D6 Inhibitors). This could result in serotonin syndrome. Selective Serotonin Reuptake Inhibitors (Strong CYP2D6 Inhibitors) may diminish the therapeutic effect of Opioid Agonists (metabolized by CYP3A4 and CYP2D6). Management: Monitor for decreased therapeutic response (eg, analgesia) and opioid withdrawal when coadministered with SSRIs that strongly inhibit CYP2D6. Additionally, monitor for serotonin syndrome/serotonin toxicity if these drugs are combined. Monitor therapy

Serotonergic Agents (High Risk): Opioid Agonists (metabolized by CYP3A4 and CYP2D6) may enhance the serotonergic effect of Serotonergic Agents (High Risk). This could result in serotonin syndrome. Management: Monitor for signs and symptoms of serotonin syndrome/serotonin toxicity (eg, hyperreflexia, clonus, hyperthermia, diaphoresis, tremor, autonomic instability, mental status changes) when these agents are combined. Monitor therapy

Siltuximab: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Monitor therapy

Simeprevir: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Monitor therapy

Sincalide: Drugs that Affect Gallbladder Function may diminish the therapeutic effect of Sincalide. Management: Consider discontinuing drugs that may affect gallbladder motility prior to the use of sincalide to stimulate gallbladder contraction. Consider therapy modification

Sodium Nitrite: Methemoglobinemia Associated Agents may enhance the adverse/toxic effect of Sodium Nitrite. Combinations of these agents may increase the likelihood of significant methemoglobinemia. Monitor therapy

SORAfenib: Acetaminophen may enhance the hepatotoxic effect of SORAfenib. SORAfenib may increase the serum concentration of Acetaminophen. Management: Avoid coadministration of acetaminophen and sorafenib if possible. If coadministration is unavoidable, monitor for signs/symptoms of hepatotoxicity, particularly in patients with greater acetaminophen exposure. Consider therapy modification

Stiripentol: May increase the serum concentration of CYP3A4 Substrates (High risk with Inhibitors). Management: Use of stiripentol with CYP3A4 substrates that are considered to have a narrow therapeutic index should be avoided due to the increased risk for adverse effects and toxicity. Any CYP3A4 substrate used with stiripentol requires closer monitoring. Consider therapy modification

Succinylcholine: May enhance the bradycardic effect of Opioid Agonists. Monitor therapy

Suvorexant: CNS Depressants may enhance the CNS depressant effect of Suvorexant. Management: Dose reduction of suvorexant and/or any other CNS depressant may be necessary. Use of suvorexant with alcohol is not recommended, and the use of suvorexant with any other drug to treat insomnia is not recommended. Consider therapy modification

Tetrahydrocannabinol: May enhance the CNS depressant effect of CNS Depressants. Monitor therapy

Tetrahydrocannabinol and Cannabidiol: May enhance the CNS depressant effect of CNS Depressants. Monitor therapy

Thalidomide: CNS Depressants may enhance the CNS depressant effect of Thalidomide. Avoid combination

Tocilizumab: May decrease the serum concentration of CYP3A4 Substrates (High risk with Inducers). Monitor therapy

Vitamin K Antagonists (eg, warfarin): Acetaminophen may enhance the anticoagulant effect of Vitamin K Antagonists. This appears most likely with daily acetaminophen doses exceeding 1.3 or 2 g/day for multiple consecutive days. Monitor therapy

Zolpidem: CNS Depressants may enhance the CNS depressant effect of Zolpidem. Management: Reduce the Intermezzo brand sublingual zolpidem adult dose to 1.75 mg for men who are also receiving other CNS depressants. No such dose change is recommended for women. Avoid use with other CNS depressants at bedtime; avoid use with alcohol. Consider therapy modification

Test Interactions

Refer to the individual Acetaminophen and Hydrocodone monographs.

Adverse Reactions

The following adverse drug reactions and incidences are derived from product labeling unless otherwise specified. Also see acetaminophen and hydrocodone.

>10%:

Central nervous system: Drowsiness (19%)

Dermatologic: Pruritus (12%)

Gastrointestinal: Nausea (22%), vomiting (13%), constipation (12%)

1% to 10%:

Cardiovascular: Hypotension (1% to 5%), presyncope (1% to 5%)

Central nervous system: Dizziness (8%), headache (6%)

Endocrine & metabolic: Hot flash (1% to 5%)

Gastrointestinal: Abdominal distention (1% to 5%), abdominal pain (1% to 5%), flatulence (1% to 5%)

Neuromuscular & skeletal: Tremor (1% to 5%), weakness (1% to 5%)

Respiratory: Dyspnea (1% to 5%)

<1%, postmarketing, and/or case reports: Agitation, chest discomfort, diarrhea, euphoria, eye pruritus, gastroesophageal reflux disease, hematemesis, hypoesthesia, nightmares, rhinitis, syncope

ALERT: U.S. Boxed Warning

Addiction, abuse, and misuse:

Benzhydrocodone/acetaminophen exposes patients and other users to the risks of opioid addiction, abuse, and misuse, which can lead to overdose and death. Assess each patient's risk prior to prescribing benzhydrocodone/acetaminophen, and monitor all patients regularly for the development of these behaviors and conditions.

Opioid analgesic risk evaluation and mitigation strategy (REMS)

To ensure that the benefits of opioid analgesics outweigh the risks of addiction, abuse, and misuse, the FDA has required a REMS for these products. Under the requirements of the REMS, drug companies with approved opioid analgesic products must make REMS-compliant education programs available to health care providers. Health care providers are strongly encouraged to complete a REMS-compliant education program and counsel patients and/or their caregivers, with every prescription, on safe use, serious risks, storage, and disposal of these products; emphasize to patients and their caregivers the importance of reading the Medication Guide every time it is provided by their pharmacist; and consider other tools to improve patient, household, and community safety.

Life-threatening respiratory depression:

Serious, life-threatening, or fatal respiratory depression may occur with use of benzhydrocodone/acetaminophen. Monitor for respiratory depression, especially during initiation of benzhydrocodone/acetaminophen or following a dose increase.

Accidental ingestion:

Accidental ingestion of even one dose of benzhydrocodone/acetaminophen, especially by children, can result in a fatal overdose of hydrocodone.

Neonatal opioid withdrawal syndrome:

Prolonged use of benzhydrocodone/acetaminophen during pregnancy can result in neonatal opioid withdrawal syndrome, which may be life-threatening if not recognized and treated, and requires management according to protocols developed by neonatology experts. If prolonged opioid use is required in a pregnant woman, advise the patient of the risk of neonatal opioid withdrawal syndrome and ensure that appropriate treatment will be available.

Hepatotoxicity:

Acetaminophen has been associated with cases of acute liver failure, at times resulting in liver transplant and death. Most of the cases of liver injury are associated with the use of acetaminophen at doses that exceed 4 g/day, and often involve more than one acetaminophen-containing product.

Cytochrome P450 3A4 interaction:

The concomitant use of benzhydrocodone/acetaminophen with all cytochrome P450 3A4 inhibitors may result in an increase in hydrocodone plasma concentrations, which could increase or prolong adverse reactions and may cause potentially fatal respiratory depression. In addition, discontinuation of a concomitantly used cytochrome P450 3A4 inducer may result in an increase in hydrocodone plasma concentration. Monitor patients receiving benzhydrocodone/acetaminophen and any CYP3A4 inhibitor or inducer.

Risks from concomitant use with Benzodiazepines or other CNS depressants:

Concomitant use of opioids with benzodiazepines or other central nervous system (CNS) depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death. Reserve concomitant prescribing of benzhydrocodone/acetaminophen and benzodiazepines or other CNS depressants for use in patients for whom alternative treatment options are inadequate. Limit dosages and durations to the minimum required. Follow patients for signs and symptoms of respiratory depression and sedation.

Warnings/Precautions

Concerns related to adverse effects:

• CNS depression: May cause CNS depression, which may impair physical or mental abilities; patients must be cautioned about performing tasks which require mental alertness (eg, operating machinery or driving).

• Constipation: May cause constipation which may be problematic in patients with unstable angina and patients with post-myocardial infarction (MI). Consider preventive measures (eg, stool softener, increased fiber) to reduce the potential for constipation.

• Hepatotoxicity: [US Boxed Warning]: Acetaminophen has been associated with cases of acute liver failure, at times resulting in liver transplant and death. Most of the cases of liver injury are associated with the use of acetaminophen at doses that exceed >4 g/day; and often involve >1 acetaminophen-containing product. Risk is increased with alcohol use, preexisting liver disease, and intake of more than one source of acetaminophen-containing medications.

• Hypersensitivity/anaphylactic reactions: Hypersensitivity and anaphylactic reactions have been reported with acetaminophen use; discontinue immediately if symptoms of allergic or hypersensitivity reactions occur.

• Hypotension: May cause severe hypotension (including orthostatic hypotension and syncope); use with caution in patients with hypovolemia, cardiovascular disease (including acute MI), or drugs which may exaggerate hypotensive effects (including phenothiazines or general anesthetics). Monitor for symptoms of hypotension following initiation or dose titration. Avoid use in patients with circulatory shock.

• Phenanthrene hypersensitivity: Use with caution in patients with hypersensitivity reactions to other phenanthrene derivative opioid agonists (codeine, hydromorphone, levorphanol, oxycodone, oxymorphone).

• Respiratory depression: [US Boxed Warning]: Serious, life-threatening, or fatal respiratory depression may occur. Monitor closely for respiratory depression, especially during initiation or dose escalation. Carbon dioxide retention from opioid-induced respiratory depression can exacerbate the sedating effects of opioids. Patients and caregivers should be educated on how to recognize respiratory depression and the importance of getting emergency assistance immediately (eg, calling 911) in the event of known or suspected overdose.

• Skin reactions: Rarely, acetaminophen may cause serious and potentially fatal skin reactions such as acute generalized exanthematous pustulosis, Stevens-Johnson syndrome, and toxic epidermal necrolysis. Discontinue treatment if severe skin reactions develop.

Disease-related concerns:

• Abdominal conditions: May obscure diagnosis or clinical course of patients with acute abdominal conditions.

• Adrenocortical insufficiency: Use with caution in patients with adrenocortical insufficiency, including Addison disease. Long-term opioid use may cause secondary hypogonadism, which may lead to mood disorders and osteoporosis (Brennan 2013).

• Biliary tract impairment: Use with caution in patients with biliary tract dysfunction or acute pancreatitis; opioids may cause constriction of sphincter of Oddi.

• CNS depression/coma: Avoid use in patients with impaired consciousness or coma as these patients are susceptible to intracranial effects of CO2 retention.

• Delirium tremens: Use with caution in patients with delirium tremens.

• Ethanol use: Use with caution in patients with alcoholic liver disease; consuming ≥3 alcoholic drinks/day may increase the risk of liver damage.

• G6PD deficiency: Use acetaminophen with caution in patients with known G6PD deficiency.

• Head trauma: Use with extreme caution in patients with head injury, intracranial lesions, or elevated intracranial pressure (ICP); exaggerated elevation of ICP may occur.

• Hepatic impairment: Use with caution in patients with hepatic impairment.

• Obesity: Use with caution in patients who are morbidly obese.

• Prostatic hyperplasia/urinary stricture: Use with caution in patients with prostatic hyperplasia and/or urinary stricture.

• Psychosis: Use with caution in patients with toxic psychosis.

• Renal impairment: Use with caution in patients with renal impairment.

• Respiratory disease: Use opioids with caution and monitor for respiratory depression in patients with significant chronic obstructive pulmonary disease or cor pulmonale, and those having a substantially decreased respiratory reserve, hypoxia, hypercarbia, or preexisting respiratory depression, particularly when initiating therapy and titrating therapy; critical respiratory depression may occur, even at therapeutic dosages. Consider the use of alternative nonopioid analgesics in these patients.

• Seizures: Use with caution in patients with a history of seizure disorders; may cause or exacerbate seizures.

• Sleep-related disorders: Opioid use increases the risk for sleep-related disorders (eg, central sleep apnea [CSA], hypoxemia) in a dose-dependent fashion. Use with caution for chronic pain and titrate dosage cautiously in patients with risk factors for sleep-disordered breathing (eg, heart failure and obesity). Consider dose reduction in patients presenting with CSA. Avoid opioids in patients with moderate to severe sleep-disordered breathing (Dowell [CDC 2016]).

• Thyroid dysfunction: Use with caution in patients with thyroid dysfunction.

Concurrent drug therapy issues:

• Benzodiazepines or other CNS depressants: [US Boxed Warning]: Concomitant use of opioids with benzodiazepines or other CNS depressants, including alcohol, may result in profound sedation, respiratory depression, coma, and death. Reserve concomitant prescribing of benzhydrocodone/acetaminophen and benzodiazepines or other CNS depressants for use in patients for whom alternative treatment options are inadequate. Limit dosage and durations to the minimum required and follow patients for signs and symptoms of respiratory depression and sedation. Consider prescribing naloxone for emergency treatment of opioid overdose in patients taking benzodiazepines or other CNS depressants concomitantly with opioids.

• CYP 3A4 interactions: [US Boxed Warning]: Use with all CYP3A4 inhibitors may result in an increase in hydrocodone plasma concentrations, which could increase or prolong adverse drug effects and may cause potentially fatal respiratory depression. In addition, discontinuation of a concomitant CYP 3A4 inducer may result in increased hydrocodone concentrations. Monitor patients receiving benzhydrocodone/acetaminophen and any CYP3A4 inhibitor or inducer.

Special populations:

• CYP2D6 "poor metabolizers": Due to the role of CYP2D6 in the metabolism of hydrocodone to hydromorphone (an active metabolite with higher binding affinity to mu-opioid receptors compared to hydrocodone), patients with genetic variations of CYP2D6, including “poor metabolizers” or “extensive metabolizers,” may have decreased or increased hydromorphone formation, respectively. Variable effects in positive and negative opioid effects have been reported in these patients; however, limited data exists to determine if clinically significant differences of analgesia and toxicity can be predicted based on CYP2D6 phenotype (Hutchinson 2004; Otton 1993; Zhou 2009).

• Cachectic or debilitated patients: Use with caution in cachectic or debilitated patients; there is a greater potential for critical respiratory depression, even at therapeutic dosages. Consider the use of alternative nonopioid analgesics in these patients.

• Elderly: Use with caution in the elderly; may be more sensitive to adverse effects. Consider the use of alternative nonopioid analgesics in these patients.

• Neonates: Neonatal withdrawal syndrome: [US Boxed Warning]: Prolonged use of opioids during pregnancy can cause neonatal withdrawal syndrome, which may be life-threatening if not recognized and treated according to protocols developed by neonatology experts. If opioid use is required for a prolonged period in a pregnant woman, advise the patient of the risk of neonatal opioid withdrawal syndrome and ensure that appropriate treatment will be available. Signs and symptoms include irritability, hyperactivity and abnormal sleep pattern, high-pitched cry, tremor, vomiting, diarrhea, and failure to gain weight. Onset, duration, and severity depend on the drug used, duration of use, maternal dose, and rate of drug elimination by the newborn.

Other warnings/precautions:

• Abrupt discontinuation/withdrawal: Abrupt discontinuation in patients who are physically dependent to opioids has been associated with serious withdrawal symptoms, uncontrolled pain, attempts to find other opioids (including illicit), and suicide. Use a collaborative, patient-specific taper schedule that minimizes the risk of withdrawal, considering factors such as current opioid dose, duration of use, type of pain, and physical and psychological factors. Monitor pain control, withdrawal symptoms, mood changes, suicidal ideation, and for use of other substances and provide care as needed. Concurrent use of mixed agonist/antagonist analgesics (eg, pentazocine, nalbuphine, butorphanol) or partial agonist (eg, buprenorphine) analgesics may also precipitate withdrawal symptoms and/or reduced analgesic efficacy in patients following prolonged therapy with mu opioid agonists.

• Abuse/misuse/diversion: [US Boxed Warning]: Use exposes patients and other users to the risks of addiction, abuse, and misuse, potentially leading to overdose and death. Assess each patient's risk prior to prescribing; monitor all patients regularly for development of these behaviors or conditions. Use with caution in patients with a history of drug abuse or acute alcoholism; potential for drug dependency exists. Other factors associated with increased risk include younger age, concomitant depression (major), and psychotropic medication use.

• Accidental ingestion: [US Boxed Warning]: Accidental ingestion, especially in children, can result in a fatal overdose of hydrocodone.

• Dosage limit: Limit acetaminophen dose from all sources (prescription and OTC) to <4 g/day.

• Naloxone access: Discuss the availability of naloxone with all patients who are prescribed opioid analgesics, as well as their caregivers, and consider prescribing it to patients who are at increased risk of opioid overdose. These include patients who are also taking benzodiazepines or other CNS depressants, have an opioid use disorder (OUD) (current or history of), or have experienced a previous opioid overdose. Additionally, health care providers should consider prescribing naloxone to patients prescribed medications to treat OUD; patients at risk of opioid overdose even if they are not taking an opioid analgesic or medication to treat OUD; and patients taking opioids, including methadone or buprenorphine for OUD, if they have household members, including children, or other close contacts at risk for accidental ingestion or opioid overdose. Inform patients and caregivers on options for obtaining naloxone (eg, by prescription, directly from a pharmacist, a community-based program) as permitted by state dispensing and prescribing guidelines. Educate patients and caregivers on how to recognize respiratory depression, proper administration of naloxone, and getting emergency help (FDA 2020).

• Optimal regimen: An opioid-containing analgesic regimen should be tailored to each patient's needs and based upon the type of pain being treated (acute versus chronic), the route of administration, degree of tolerance for opioids (naive versus chronic user), age, weight, and medical condition. The optimal analgesic dose varies widely among patients; doses should be titrated to pain relief/prevention.

• REMS program: [US Boxed Warning]: To ensure that the benefits of opioid analgesics outweigh the risks of addiction, abuse, and misuse, a REMS is required. Drug companies with approved opioid analgesic products must make REMS-compliant education programs available to health care providers. Health care providers are encouraged to complete a REMS-compliant education program; counsel patients and/or their caregivers, with every prescription, on safe use, serious risks, storage, and disposal of these products; emphasize to patients and their caregivers the importance of reading the Medication Guide every time it is provided by their pharmacist; and consider other tools to improve patient, household, and community safety.

• Surgery: Opioids decrease bowel motility; monitor for decreased bowel motility in postop patients receiving opioids. Use with caution in the perioperative setting; individualize treatment when transitioning from parenteral to oral analgesics.

Monitoring Parameters

Pain relief, respiratory and mental status, blood pressure; bowel function; signs/symptoms of misuse, abuse, and addiction.

Reproductive Considerations

Long-term opioid use may cause secondary hypogonadism, which may lead to sexual dysfunction and infertility (Brennan 2013).

Pregnancy Considerations

[US Boxed Warning]: Prolonged use of opioids during pregnancy can cause neonatal withdrawal syndrome, which may be life-threatening if not recognized and treated according to protocols developed by neonatology experts. If opioid use is required for a prolonged period in a pregnant woman, advise the patient of the risk of neonatal opioid withdrawal syndrome and ensure that appropriate treatment will be available.

Also refer to the individual Acetaminophen and Hydrocodone monographs.

Patient Education

What is this drug used for?

• It is used to ease pain.

All drugs may cause side effects. However, many people have no side effects or only have minor side effects. Call your doctor or get medical help if any of these side effects or any other side effects bother you or do not go away:

• Nausea

• Vomiting

• Itching

• Headache

• Loss of strength and energy

WARNING/CAUTION: Even though it may be rare, some people may have very bad and sometimes deadly side effects when taking a drug. Tell your doctor or get medical help right away if you have any of the following signs or symptoms that may be related to a very bad side effect:

• Liver problems like dark urine, fatigue, lack of appetite, nausea, abdominal pain, light-colored stools, vomiting, or yellow skin

• Adrenal gland problems like severe nausea, vomiting, severe dizziness, passing out, muscle weakness, severe fatigue, mood changes, lack of appetite, or weight loss

• Sexual dysfunction (males)

• No menstrual periods

• Decreased sex drive

• Trouble getting pregnant

• Severe dizziness

• Passing out

• Severe fatigue

• Trouble breathing

• Slow breathing

• Shallow breathing

• Shortness of breath

• Confusion

• Agitation

• Trouble walking

• Severe constipation

• Severe abdominal pain

• Unable to pass urine

• Change in amount of urine passed

• Chest pain

• Fast heartbeat

• Mood changes

• Seizures

• Stevens-Johnson syndrome/toxic epidermal necrolysis like red, swollen, blistered, or peeling skin (with or without fever); red or irritated eyes; or sores in mouth, throat, nose, or eyes.

• Serotonin syndrome like dizziness, severe headache, agitation, sensing things that seem real but are not, fast heartbeat, abnormal heartbeat, flushing, tremors, sweating a lot, change in balance, severe nausea, or severe diarrhea.

• Signs of an allergic reaction, like rash; hives; itching; red, swollen, blistered, or peeling skin with or without fever; wheezing; tightness in the chest or throat; trouble breathing, swallowing, or talking; unusual hoarseness; or swelling of the mouth, face, lips, tongue, or throat.

Note: This is not a comprehensive list of all side effects. Talk to your doctor if you have questions.

Consumer Information Use and Disclaimer: This information should not be used to decide whether or not to take this medicine or any other medicine. Only the healthcare provider has the knowledge and training to decide which medicines are right for a specific patient. This information does not endorse any medicine as safe, effective, or approved for treating any patient or health condition. This is only a limited summary of general information about the medicine’s uses from the patient education leaflet and is not intended to be comprehensive. This limited summary does NOT include all information available about the possible uses, directions, warnings, precautions, interactions, adverse effects, or risks that may apply to this medicine. This information is not intended to provide medical advice, diagnosis or treatment and does not replace information you receive from the healthcare provider. For a more detailed summary of information about the risks and benefits of using this medicine, please speak with your healthcare provider and review the entire patient education leaflet.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.